Enabling a Reliable STT-MRAM Main Memory Simulation

Kazi Asifuzzaman, Rommel Sanchez Verdejo & Petar Radojković

Barcelona Supercomputing Center

The International Symposium on Memory Systems (MEMSYS), 2017
Motivation

DRAM is the dominant main memory technology for decades (mature technology).

Numerous studies forecasted end of DRAM:
- Scalability
- Resiliency
- Reliability
- Refresh/Power

Emerging technologies
- PCM
- NAND
- STT-MRAM
- RRAM
- 3D X-Point
STT-MRAM (Spin Transfer Torque Magnetic Random Access Memory)

Magnetic Tunneling Junction (MTJ)

Free magnetic layer

Fixed magnetic layer

STT-MRAM cell
Low resistance MTJ - Logical “0”

Free magnetic layer

Fixed magnetic layer

STT-MRAM cell
High resistance MTJ - Logical “1”

STT-MRAM Properties

- Non volatile
- Byte addressable
- High endurance
- High scalability
- CMOS compatible
Several studies analyze STT-MRAM as a cache memory:

- Clean replacement
- Integrate with SRAM
- EWT Scheme
- Trading-off non-volatility
- Retention time
STT-MRAM is rapidly catching up with DRAM capacity.
Only a few studies evaluate STT-MRAM as the Main Memory

- Questionable time parameters
- Unreliable source of timing
- Obsolete
- Preliminary study
STT-MRAM Main Memory Timing

STT-MRAM Timing Parameters Obstacles
- STT-MRAM Main Memory timing has not been Standardized
- Manufacturers won’t reveal timing information

Our approach to find reliable timing
- Patent applications & scientific papers
- DDRx compatibility
- Seamless Integration
STT-MRAM Cell Array

STT-MRAM vs DRAM cell array
DRAM vs STT-MRAM timing

Timing parameters associated with row operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DRAM</th>
<th>ST-1.2</th>
<th>ST-1.5</th>
<th>ST-2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>tRCD</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>tRP</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>tFAW</td>
<td>24</td>
<td>29</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>tRRD</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>tRFC</td>
<td>208</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Timing parameters not associated with row operation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DRAM</th>
<th>ST-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>tBURST</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>tAL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tCAS</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>tRTP</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>tCCD</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>tWTR</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>tRTRS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tCWD</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>tWR</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>tCKE</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>tCMD</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>tXP</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

The numbers are bound to be changed with time. But methodology should persist.

DDR3 1600 Cycles
Simulation Infrastructure

SPEC CPU 2006 Benchmarks
- Video Compression
- Quantum Computing
- Programming Languages
- Artificial Intelligence
- Quantum Chemistry
- Molecular Dynamics
- Fluid Dynamics
- General Relativity

* Three sets of STT-MRAM timings were tested by varying key timing parameters (Sensitivity Analysis).

ZSim System Simulator
(Sandy bridge EP E5 2670)

DRAMSim2
(DDR3 DRAM 1600 STT-MRAM*)
Floating point benchmarks: speedup ranges from 0% (tonto) to 7.4% (milc); 2.7% on average.

Integer benchmarks: speedup ranges from 0.3% (gobmk) to 3.2% (hmmer); 1.4% on average.
Results – 1.5x Slower STT-MRAM

Floating point benchmarks: slowdown ranges from 0% (gamess) to 10.1% (lbm); 2.8% on average.

Integer benchmarks: slowdown ranges from -0.2% (h264ref) to 2.6% (sjeng); 1.1% on average.
Results – 2.0x Slower STT-MRAM

Floating point benchmarks: slowdown ranges from 0% (gamess) to 29.6% (lbm); 11.9% on average.

Integer benchmarks: slowdown ranges from 0.2% (h264ref) to 9.3% (bzip2); 5.1% on average.
Conclusions

- STT-MRAM is a promising memory technology
- Lack of reliable timing parameters of STT-MRAM
- First study to introduce detailed timing parameters
- Comparable performance w.r.t DRAM
- Enable researchers for reliable system level research
THANK YOU!