
Using Isoefficiency as a Metric to Assess Disaggregated Memory
Systems for High Performance Computing

Anusha Devulapally
The Pennsylvania State University

USA
akd5994@psu.edu

Mahantesh Halappanavar
Pacific Northwest National

Laboratory
USA

hala@pnnl.gov

Amit Puri
Indian Institute of Technology

Guwahati
India

amitpuri@iitg.ac.in

Vijaykrishnan Narayanan
The Pennsylvania State University

USA
vijaykrishnan.narayanan@psu.edu

Andres Marquez
Pacific Northwest National

Laboratory
USA

Andres.Marquez@pnnl.gov

ABSTRACT
Memory disaggregation is an approach to decouple compute and
memory to minimize the total cost of ownership. However, ana-
lytical methods to study the impact of this approach are not read-
ily available for high performance computing use cases. In this
position paper, we propose isoefficiency as an approach to analyt-
ically demonstrate the classes of algorithms that would benefit
from disaggregated memory technologies as we scale to a larger
number of processors. Isoefficiency of an algorithm is given by
a function 𝑁 (𝑝) that measures the degree to which the problem
size needs to increase with 𝑝 (number of processors) to maintain
a constant efficiency. We evaluate isoefficiency using sparse gen-
eral matrix–matrix multiplication (SpGEMM) on a 2-socket shared-
memory system and the simulation of a CXL-based disaggregated
system. Our results support the suitability of isoefficiency for evalu-
ating disaggregated memory systems with different design choices
in conjunction with different application kernels.

KEYWORDS
CXL, disaggregated memory, isoefficiency, performance modeling

1 INTRODUCTION
Traditional cloud computing (data center) resources over-provision
resources in order to enable efficient execution of applications, lead-
ing to underutilization of resources for many applications. Memory
disaggregation is a paradigm where memory resources are decou-
pled from the compute nodes and are pooled together to be dy-
namically shared across multiple compute nodes [9] (detailed in
§2). Disaggregated systems can potentially benefit resource sharing
by heterogeneous workloads and memory-intensive applications
such as database systems, graph analytics, artificial intelligence and
machine learning applications [10, 23].

The emergence of compute-intensive generative artificial intelli-
gence and rapid adoption of cloud computing has made memory
disaggregation an important technology. However, memory disag-
gregation is a complex problem and a wide variety of design choices
necessitate a coherent metric for evaluation. From the perspective
of high performance computing with single application in mind, we
propose isoefficiency as an important metric to compare different

systems [12]. Isoefficiency is a critical metric that not only facilitates
direct comparisons between different systems but also provides a
comprehensive evaluation by considering algorithmic design and
input characteristics. This metric is particularly significant for dis-
aggregated memory systems, where the balance between resource
provisioning and computational demand is crucial.

By focusing on the scalability of a system as more compute re-
sources are added, isoefficiency captures the essential strong and
weak scaling behaviors that these systems are expected to exhibit.
As such, it serves as an essential tool in evaluating and optimiz-
ing disaggregated memory architectures, ensuring they meet the
performance requirements of memory-intensive applications. Intu-
itively, isoefficiency measures the rate at which the input sizes need
to grow relative to the growth in computing resources in order to
keep parallel efficiency constant (detailed in §3).

Disaggregated memory systems are built by physically separate
pools of memory that are accessible on-demand to the computing
nodes over fabric attached memory (FAM). Compute Express Link
(CXL version 3.0) is a PCIe-based protocol that supports switched
cache-coherent memory pooling and memory sharing [11]. CXL
as a FAM stand-in is interesting due to its wide industrial adop-
tion, providing memory capacity expansion and system memory
bandwidth increase with a reasonable latency penalty, making it
important for high memory demand applications. In this position
paper, we focus on the disaggregated memory systems using CXL
technology in our simulation-based empirical evaluation (detailed
in §4 and §5).
Contributions: Our contributions are as follows:

• Propose isoefficiency as a unified metric to evaluate disaggre-
gated memory systems, for both individual and relative compar-
isons of systems.

• Propose combinatorial approach for sparse general matrix ma-
trix multiplication (SpGEMM) to demonstrate the efficacy of
isoefficiency as a viable metric for quantitative evaluation.

• Perform empirical analysis using simulation of CXL-based sys-
tem and representative and scalable synthetic inputs.

Since disaggregated-memory systems are nascent but rapidly evolv-
ing, we believe that development of efficient metrics for evaluation
will enable consistent and comprehensive evaluation of different

Anusha Devulapally, Mahantesh Halappanavar, Amit Puri, Vijaykrishnan Narayanan, and Andres Marquez

systems and design choices, as well as in identifying specific appli-
cations that can benefit from disaggregated systems.

2 PRELIMINARIES AND RELATEDWORK
The demand for computing has been growing at an exponential
rate [19], especially due to the rapid adoption of artificial intelli-
gence. Consequently, the need for memory capacity and bandwidth
increase proportionately. However, traditional approaches of provi-
sioningmemory close to compute do not scale and lead to inefficient
use of memory due to stranding and limitations in fine-grained
data sharing in distributed systems. These limitations can be effec-
tively addressed by memory pooling. However, providing coherent
access to pooled memory is challenging. The Compute Express Link
(CXL®) is an open industry-standard that builds on the Peripheral
Component Interconnect-Express® (PCI-Express®or PCIe®) and
provides protocols for coherent memory accesses between pro-
cessors and computing devices such as CPUs, accelerators (GPUs,
FPGAs, etc.), memory buffers, persistent memory, and solid-state
drives. We refer you to authoritative documents on the exact details
[6] provided by the three generations of CXL that specify the inter-
connect and multiple protocols, spanning from a single machine
to 100s of machines [1, 7]. In this section, we only provide a brief
survey of current literature since our goal is to propose a metric
for evaluation and not a direct evaluation of CXL based systems.

Gouk et al. used CXL’s memory protocol (cxl.mem) to directly
connect host processor andmemory resourceswithout the overhead
of data copying like RDMA [11]. They present DRAM-like perfor-
mance when the workload resides in host-processor’s cache. Wang
et al. use a memory pooling system to combine RDMA and CXL
to achieve memory disaggregation [21], whereas, Li et al. also use
a memory pooling system that significantly reduces DRAM costs
using CXL for cloud computing platforms [15]. Sun et al. provide
performance evaluation and theoretical analysis of a CXL-ready
system relative to NUMA-based CXL emulators demonstrating the
advantages of such systems on various latency and throughput
sensitive applications [20]. Lerner and Alonso provide an empirical
study demonstrating the advantages of CXL on scale-up database
architectures [14]. However, they do not provide details about per-
formance gain, complexity or overhead of using CXL.

Performance analysis is an expansive field on its own [13]. In
this position paper, we propose to use isoefficiency of Grama et al.,
which provides a theoretical framework for evaluation of system
scalability for specific algorithms and inputs by quantifying the
relation between problem size and number of processors while keep-
ing parallel efficiency a constant [12]. Isoefficiency metrics have
been used in various applications, such as unbalanced workloads in
parallel systems [2] and on big data frameworks like Hadoop and
Spark [18]. On particular relevance in this context is the Roofline
model of Williams et al. [22], which provides a visualization of
performance by plotting arithmetic intensity (floating-point per-
formance) as a function of theoretical peak performance and peak
bandwidth of a specific architecture. Ding et al. provide a frame-
work to evaluate disaggregated memory systems using Roofline
model, emphasizing on the improved memory utilization and flexi-
bility for various HPC workloads. Their analysis shows that most
of the applications do not suffer from performance degradation

when using disaggregated memory [8]. Unlike the Roofline model,
our goal is to evaluate scalability of algorithm-architecture com-
binations for different problems without requiring to consider a
vast number of possible combinations. This is where isoefficiency
comes to fore.

3 ISOEFFICIENCY AS A METRIC
In this position paper, we posit that isoefficiency is a better metric to
evaluate systems and system designs with disaggregated memory.
Isoefficiency provides a consistent metric to measure the relative
performances of different systems across three major components:
(𝑖) hardware parameters and system (or design) configurations, (𝑖𝑖)
algorithmic design choices (computation, communication, etc.), and
(𝑖𝑖𝑖) input characteristics. Relative performances can be measured
with a single metric while varying across different components
when the systems scale with number of processing units and other
components. Since isoefficiency focuses on the scalability of a sys-
tem when computing resources are added to the system, it provides
a unified metric for relative comparisons.

Number of Processors

Is
oe

ffi
ci

en
cy

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16 32 64 128 256 512 1024

ISO ISO+ ISO-

Figure 1: Illustration of isoefficiency – perfect (in blue), 10%
super-efficient (orange) and 10% sub-efficient (green).

Introduced by Grama et al., [12] isoefficiency evaluates the scala-
bility of parallel systems and algorithms by analyzing the required
growth in problem size 𝑁 relative to the number of processors 𝑃 to
maintain a constant efficiency 𝐸. Intuitively, a proportional growth
in work with growth in number of processors is considered as an
isoefficient system. Efficiency 𝐸 is given as the ratio of the speedup
𝑆 to the number of processors 𝑃 , where speedup 𝑆 is the ratio of
the execution time on a single processor 𝑇𝑠 to the execution time
on 𝑝 processors 𝑇𝑝 . The isoefficiency 𝐸 (𝑝) determines the rate at
which the problem size must increase to keep efficiency a constant,
as described by the equation 𝑁 = 𝐾.𝐸 (𝑝), where𝐾 is constant. This
function provides insights on the scalability of a parallel system.We
provide a hypothetical illustration for a problem that scales with
number of processors in Figure 1. The three lines in the figure depict
when efficiency scales linearly, super-linearly and sub-linearly.

Using Isoefficiency as a Metric to Assess Disaggregated Memory Systems for High Performance Computing

4 EVALUATING ISOEFFICIENCY
In this section we detail our approach for computing isoefficiency
for traditional shared-memory systems and systems with disaggre-
gated memory. We perform the comparisons using sparse general
matrix–matrix multiplication (SpGEMM) as the computational ker-
nel. For enabling different memory footprints, we use R-MAT as
the generative model for building the matrices. We perform ex-
periments on a traditional 2-socket shared-memory system and a
simulator for disaggregated memory system.

4.1 Algorithm: Sparse matrix multiplication
Our goal was to select an algorithm that would not only stress the
memory system but also include sufficient floating-point operations.
We therefore selected sparse general matrix–matrix multiplication
(SpGEMM) as the first algorithm for demonstrating that isoeffi-
ciency is a viable metric for evaluating systems. Since our goal
is not to implement the best algorithm for SpGEMM, we adopt
a simplistic but work-efficient approach for SpGEMM using the
combinatorial approach of Brualdi and Cvetkovic [3].

Given two sparse matrices 𝐴 and 𝐵, we build a special data
structure called a König digraph, 𝐺 = (𝑊 ∪ 𝑅 ∪ 𝐾, 𝐸1 ∪ 𝐸2). Each
row in 𝐴 is represented with a “white” vertex (𝑊) in 𝐺 . The “gray”
vertices (𝑅) represent both the columns of 𝐴 and rows of 𝐵, and
the “black” vertices (𝐾) represent the columns in 𝐵. The nonzero
elements in 𝐴 and 𝐵 are represented by directed and weighted
edges in 𝐸1 and 𝐸2 respectively. A simple 3 × 3 matrix example
is provided in Fig. 2. The nonzero values in 𝐶 = 𝐴 · 𝐵 can be
computed by performing two-hop walks starting from vertices in
𝑊 and ending with vertices in 𝐾 . For example, the nonzero value
for 𝐶 (1, 2) in Fig. 2, will consist of a traversal from𝑤1 → 𝑟1 → 𝑘2
and𝑤1 → 𝑟3 → 𝑘2. The time complexity of this algorithm can be
expressed as 𝑂 (𝑛Δ2), where 𝑛 is the number of rows in 𝐴 and Δ is
the maximum degree for vertices in𝑊 and 𝑅. While this is a loose
bound, we note that the amount of work performed is proportional
to the number of nonzeros in 𝐴 and 𝐵.
Parallel Implementation: We implement SpGEMM in C++ using
OpenMP with all data structures using 64-bit precision. We use
a compressed sparse representation for Kŏnig digraph 𝐺 , which
provides efficient access to nonzeros for each row and column
in 𝐴 and 𝐵 respectively. Unlike a serial implementation, parallel
SpGEMM is nontrivial without first constructing the nonzeros in
𝐶 , assuming that the structure of 𝐶 is dense (either fully or in
blocks). In our implementation, we first perform a symbolic walk
to determine the exact location of each non-zero value in 𝐶 , and
then perform the actual computation. Due to the nature of our
implementation, which is not highly optimized, the construction
of 𝐶 takes considerably more time than calculating the values of 𝐶 ,
and does not scale well. We present the results in §5.

4.2 Input: Recursive-Matrix Traversal (R-MAT)
The input graphs are generated using the “recursive matrix” (R-
MAT) graph generator of Chakrabarti et al. [5]. Consider a graph
𝐺 (𝑉 , 𝐸), where 𝑉 are vertices and |𝐸 | are number of edges. The
adjacency matrix of 𝐺 consists of 𝑉 nodes (𝑉 × 𝑉) matrix. This
algorithm works by recursively sub-dividing the adjacency matrix
of the generated into four quadrants and distributes the edges

within these quadrants with specified probabilities. The distribution
is dependent on the non-negative probabilities (𝑎, 𝑏, 𝑐, 𝑑) whose
sum equals to one. We consider three sets of probabilities ([4]) –
RMAT-ER: (0.25, 0.25, 0.25, 0.25), RMAT-G: (0.45, 0.15, 0.15, 0.25)
and RMAT-B: (0.55, 0.15, 0.15, 0.15) in our experiments. We present
results for RMAT-ER and RMAT-G. We only performed simulations
with RMAT-ER.

The algorithm starts with an empty adjacent matrix, and an
edge is placed in the matrix by choosing one of the four quadrants
based on the (𝑎, 𝑏, 𝑐, 𝑑) probabilities. The chosen quadrant is further
divided into four smaller quadrants and this process repeats until
the quadrant is of size 1𝑥1, where an edge is placed. This edge
placement is repeated |𝐸 | times to create the desired graph 𝐺 . In
our experiments, we set |𝐸 | = 8 × |𝑉 |. The sparsity structure of
RMAT-ER can be observed that each row has roughly the same
number of nonzeros (normal distribution) with an equal probability
to have any of the columns as its neighbor in𝐺 , and there, a highly
random structure of neighborhoods. RMAT-G and RMAT-B display
skewed normal distributions and unstructured neighborhoods. In
other words, the R-MAT generator does not produce graphs with a
good community structure [4].

4.3 Simulator: Disaggregated Memory System
We use DRackSim [16] simulator to experiment with a CXL-enabled
disaggregated memory system. Although DRackSim can simulate
a large-scale system, we configure it for one compute and remote
memory node. The compute node models a multi-socket CPU sys-
temwith an out-of-order pipeline at compute cores and amulti-level
cache hierarchy for CPU-driven memory simulation. The memory
manager is configured to allocate memory at a 50:50 ratio in local
and remote memory, alternatively for each page. In the simulation,
the remote memory node is connected to the compute node through
a 10, 30 or 50 Gbps interconnect having 35ns of total latency for
(de)packetization/processing. The interconnect uses a queue-based
modeling that takes 64-byte memory request packets from the com-
pute node and forwards them to the memory node. In a large-scale
CXL3.0-enabled system, a compute node will only get a small share
of the switch bandwidth. Therefore, we perform simulations at
multiple interconnect bandwidths to validate the proposed metric
for changing resource availability in a real system. However, the
remote memory access at the memory node is always performed
at cache line granularity (64B), which sends a 128-byte response
packet, including cache line data. The DRAM simulation at local and
remote memory is handled by integrating DRAMSim2 [17], which
instantiates multiple 2400MHz DDR4 (19.2Gbps) components each
for local and remote memory. The thread context switching time is
not considered in the simulator.

4.4 Traditional: 2-socket Shared Memory Node
The 2-socket shared-memory system that we used in this work
is comprised of AMD EPYC 7282 16-core processor, utilizing the
x86_64 architecture. It supports both 32-bit and 64-bit operation
modes with a little-endian byte order. The system has 32 CPUs,
organized as 16 cores per socket across 2 sockets, with each core
operating on single thread, and two NUMA nodes(node 0: CPUs
0-15, node 1: CPUs 16-31). The processor runs at a frequency of

Anusha Devulapally, Mahantesh Halappanavar, Amit Puri, Vijaykrishnan Narayanan, and Andres Marquez

Matrix A

E11,1 E11,3

E12,2

E13,2 E13,3

w1

w2

w3

r1 r2 r3

E22,1 E22,3

E23,2 E23,3

r1

r2

r3

k1 k2 k3

E21,2

Matrix B

Matrix C

C1 C2 C3

C4 C5 C6

C7 C8 C9

w1

w2

W3

k1 k2 k3

E11,1

E11,3

w1

E12,2w2

E13,3w3

E21,2
r1

E2 2,1

E22,3

r2
E2 3,2

E23,3r3

k1

k2

k3

E13,2

Where,
C2 = E11,1 * E21,2 + E13,3 * E23,2
C4 = E12,2* E22,1
C6= E12,2 * E22,3
C7= E13,2 * E22,1
C9= E13,2 * E22,3 + E13,3 * E23,3
C1, C3, C5, C8 = None

Figure 2: Illustration of sparse general matrix–matrix multiplication (SpGEMM) using the combinatorial approach.

approximately 2.8 GHz with a BogoMIPS value of 5589.58, and
supports AMD-V virtualization technology. The memory hierarchy
includes 32KB of L1 data- and L1 instruction-cache per core, 512Kb
of L2 cache per core, and 16MB of shared L3 cache.

5 EXPERIMENTAL RESULTS
Weperform sparse generalmatrix–matrixmultiplication (SpGEMM)
on a 2-socket system described in §4.4. We present the time for two
specific steps: (𝑖) Computing the structure of matrix 𝐶 , and (𝑖𝑖)
computing the values of matrix 𝐶 . We describe the steps in §4.1.
We note that further optimizations are required for computing the
structure of 𝐶 kernel. As we observe in Table 2, parallel efficiency
number are very low indicating that this step does not scale well.
We also note that we do not explicitly construct the König digraph
since matrices 𝐴 and 𝐵 are stored in row-wise and column-wise
formats.

Computing the nonzero values of matrix 𝐶 after it’s compressed
sparse structure is built scales well proportional to the number of
processors and doubling of the number of problem size. In order
to double the amount of work, we double the number of nonzeros
in matrices 𝐴 and 𝐵. We note that the number of nonzeros is pro-
portional to the matrix size (we use a fixed ration of 8× as noted
in §4.2). By increasing the value of 𝑆𝐶𝐴𝐿𝐸 by one, we double the
matrix size (2𝑆𝐶𝐴𝐿𝐸), and consequently, the problem size. Similarly,
by increasing the value of 𝑆𝐶𝐴𝐿𝐸 by two quadruples the work. We
note that by using the probability values of (0.25, 0.25, 0.25, 0.25)
for R-MAT generator, we expect to have a normal distribution for
the number of nonzeros for each row (and column).

5.1 Traditional 2-Socket Computing Results:
We present results from the 2-socket experiments for building the
structure of𝐶 and computing the values of𝐶 . We present the results
along two components: (𝑖) Different input parameters – RMAT-ER
and RMAT-G, and (𝑖𝑖) two growth rates for work – doubling and
quadrupling the sizes. Table 2 summarizes the isoefficiency for com-
puting the structure of 𝐶 , and Table 1 summarizes the isoefficiency
for computing the values of 𝐶 .

𝑆𝐶𝐴𝐿𝐸

Threads 17 18 19 20 21 22 23 24
2 0.11 0.10 0.10 0.06 0.06 0.06 0.06 0.06
4 0.18 0.16 0.14 0.11 0.12 0.11 0.11 0.11
8 0.35 0.33 0.30 0.26 0.25 0.24 0.23 0.22
16 0.63 0.62 0.61 0.56 0.52 0.46 0.43 0.44
32 1.22 1.15 1.14 1.05 1.03 0.94 0.96 0.93

Table 1: Iso-efficiency of the traditional 2-socket shared sys-
tem for the task of computing matrix C. Here, problem size
of the input depends on Scale, i.e., 2𝑆𝐶𝐴𝐿𝐸 .

We observe in Figure 4 that building the structure of 𝐶 is not
an efficient kernel due to irregular memory accesses and the lack
of arithmetic operations to amortize the access costs. We can also
observe that quadrupling the problem sizes is more efficient than
doubling the problem sizes. Further, RMAT-ER scales better than
RMAT-G since load imbalances are expected to be smaller for RMAT-
ER (due to differences in degree distributions).

In contrast, calculating the nonzero values after the structure
has been built parallelizes efficiently. We observe better scaling for
larger problems (𝑆𝐶𝐴𝐿𝐸 ≥ 22), as summarized in Figure 4. Further,

Using Isoefficiency as a Metric to Assess Disaggregated Memory Systems for High Performance Computing

𝑆𝐶𝐴𝐿𝐸

Threads 17 18 19 20 21 22 23 24
2 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.051
4 0.08 0.07 0.07 0.06 0.06 0.06 0.06 0.057
8 0.08 0.08 0.08 0.07 0.07 0.07 0.06 0.06
16 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07
32 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07

Table 2: Iso-efficiency of the traditional 2-socket shared sys-
tem for the task of building the structure of C. Here, problem
size of the input depends on 𝑆𝐶𝐴𝐿𝐸, i.e., 2𝑆𝐶𝐴𝐿𝐸 .

Number of Threads (Processors)

Is
oe

ffi
ci

en
cy

0.000

0.025

0.050

0.075

0.100

2 4 8 16 32

Double the Problem Size (RMAT-ER) Quadraple the Problem Size (RMAT-ER)
Double the Problem Size (RMAT-G) Quadraple the Problem Size (RMAT-G)

Figure 3: Isoefficiency for building the structure of 𝐶 on tra-
ditional 2-scoket memory system.

Number of Threads (Processors)

Is
oe

ffi
ci

en
cy

0.00

0.25

0.50

0.75

1.00

1.25

2 4 8 16 32

Double the Problem Size (RMAT-ER) Quadraple the Problem Size (RMAT-ER)
Double the Problem Size (RMAT-G) Quadraple the Problem Size (RMAT-G)

Figure 4: Isoefficiency for computing the values of 𝐶 on tra-
ditional 2-scoket memory system.

we do not observe noticeable difference between RMAT-ER and
RMAT-G. We can observe the stark differences in the isoefficiency
values for the two kernels – building structure and computing
values. We can therefore conclude that isoefficiency provides a
unified metric for evaluating scalability of a system along different
aspects — algorithm, input and hardware features.

5.2 Simulation Results
We now provide empirical evaluation for simulated results using
DRackSim (detailed in §4.3). Since we had difficulties in simulating
complete SpGEMM execution, we only present the results for com-
puting the structure of𝐶 in this section. If accepted, we will present
the complete results in the final version of this work. Results for
two different settings of the network bandwidth are summarized
in Table 3. The isoefficiency values for three different bandwidth
settings are presented in Figure 5. Since the numbers for 50 Gbps
and 30 Gbps are very similar, we omit them from Table 3. We can
observe that the isoefficiency values successively decrease, and
therefore, indicate that the growth in problem size needs to be
more than linear in order to maintain a constant isoefficiency.

#Threads 𝑆𝐶𝐴𝐿𝐸 M-Cycles Isoefficiency
50 Gbps

1 10 112 1.00
2 11 153 0.88
4 12 224 0.61
8 13 369 0.38
16 14 650 0.23

10 Gbps
1 10 121 1.00
2 11 166 0.36
4 12 247 0.12
8 13 402 0.04
16 14 720 0.01

Table 3: Results from the DRackSim simulator. Compute time
is calculated in millions of cycles.

Number of Threads (Processors)

Is
oe

ffi
ci

en
cy

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16

Iso-50Gbps Iso-30Gbps Iso-10Gbps

Figure 5: Isoefficiency calculated for computing the struc-
ture of 𝐶 using the DRackSim simulator for different network
bandwidths

6 SUMMARY AND FUTUREWORK
In this position paper, we proposed isoefficiency as a suitable met-
ric to analyze the performance of disaggregated memory systems
with respect to specific application workloads and input data char-
acteristics. We used sparse general matrix–matrix multiplication
(SpGEMM) as an illustrative example using synthetic matrices gen-
erated by the recursive-matrix (R-MAT) generator. We provide

Anusha Devulapally, Mahantesh Halappanavar, Amit Puri, Vijaykrishnan Narayanan, and Andres Marquez

results on a traditional 2-socket shared-memory system using a
multithreaded implementation of a combinatorial approach for
SpGEMM. We also provided preliminary results from using a simu-
lator modeling a CXL-based disaggregated memory system.

In the future work, we plan to optimize SpGEMM algorithm
and conduct extensive empirical evaluations on a 8-socket shared-
memory system using inputs with varying degree distributions
and application kernel. Further, we plan to perform runs on an
experimental CXL-based system, which also be used to compute
accurate parameters for the simulator, as well as validate the simu-
lated performance values. We believe that this work will provide a
consistent and rigorous approach to evaluate disaggregated mem-
ory systems for different applications using isoefficiency as the
metric for evaluations.

7 ACKNOWLEDGEMENTS
This work was supported by the U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research, under award 76125:
“AMAIS - Advanced Memory to support Artificial Intelligence for
Science”. The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy under contract DE-AC05-
76RL01830, and by PRISM, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

REFERENCES
[1] Marcos K. Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam,

and Gerd Zellweger. 2023. Memory disaggregation: why now and what are the
challenges. SIGOPS Oper. Syst. Rev. 57, 1 (jun 2023), 38–46. https://doi.org/10.
1145/3606557.3606563

[2] Jose L Bosque, Oscar D Robles, Pablo Toharia, and Luis Pastor. 2013. Analyz-
ing scalability of parallel systems with unbalanced workload. The Journal of
Supercomputing 64 (2013), 110–119.

[3] Richard A. Brualdi and Dragos M. Cvetkovic. 2008. A Combinatorial Approach to
Matrix Theory and Its Applications. https://api.semanticscholar.org/CorpusID:
119079649

[4] Ümit VÇatalyürek, John Feo, AssefawHGebremedhin,MahanteshHalappanavar,
and Alex Pothen. 2012. Graph coloring algorithms for multi-core and massively
multithreaded architectures. Parallel Comput. 38, 10-11 (2012), 576–594.

[5] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[6] CXL Consortium. [n. d.]. CXL Specification.
[7] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024. An Intro-

duction to the Compute Express Link (CXL) Interconnect. ACM Comput. Surv.
(jun 2024). https://doi.org/10.1145/3669900 Just Accepted.

[8] Nan Ding, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan,
LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, and Nicholas
Wright. 2022. Methodology for Evaluating the Potential of Disaggregated Mem-
ory Systems. In 2022 IEEE/ACM International Workshop on Resource Disaggre-
gation in High-Performance Computing (REDIS). 1–11. https://doi.org/10.1109/
RESDIS56595.2022.00006

[9] Mohammad Ewais and Paul Chow. 2023. Disaggregated Memory in the Data-
center: A Survey. IEEE Access 11 (2023), 20688–20712. https://doi.org/10.1109/
ACCESS.2023.3250407

[10] Sayan Ghosh, Nathan R. Tallent, Marco Minutoli, Mahantesh Halappanavar,
Ramesh Peri, and Ananth Kalyanaraman. 2021. Single-Node Partitioned-Memory
for Huge Graph Analytics: Cost and Performance Trade-Offs. In SC21: Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis. 01–16.

[11] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. 2023. Memory Pooling With CXL. IEEE Micro 43, 2 (2023), 48–57.
https://doi.org/10.1109/MM.2023.3237491

[12] Ananth Y Grama, Anshul Gupta, and Vipin Kumar. 1993. Isoefficiency: Measuring
the scalability of parallel algorithms and architectures. IEEE Parallel & Distributed
Technology: Systems & Applications 1, 3 (1993), 12–21.

[13] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley. 720 pages.

[14] Alberto Lerner and Gustavo Alonso. 2024. CXL and the Return of Scale-Up
Database Engines. arXiv preprint arXiv:2401.01150 (2024).

[15] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574–587.

[16] Amit Puri, Kartheek Bellamkonda, Kailash Narreddy, John Jose, Venkatesh Tama-
rapalli, and Vijaykrishnan Narayanan. 2024. DRackSim: Simulating CXL-enabled
Large-Scale Disaggregated Memory Systems. In Proceedings of the 38th ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (, Atlanta, GA,
USA,) (SIGSIM-PADS ’24). Association for Computing Machinery, New York, NY,
USA, 3–14. https://doi.org/10.1145/3615979.3656059

[17] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture Letters 10, 1
(2011), 16–19. https://doi.org/10.1109/L-CA.2011.4

[18] David Sanchez, Oswaldo Solarte, Victor Bucheli, and Hugo Ordonez. 2018. Eval-
uating the scalability of big data frameworks. Scalable Computing: Practice and
Experience 19, 3 (2018), 301–307.

[19] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. Green AI.
Commun. ACM 63, 12 (nov 2020), 54–63. https://doi.org/10.1145/3381831

[20] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. 2023. Demystifying
cxl memory with genuine cxl-ready systems and devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture. 105–121.

[21] Zhonghua Wang, Yixing Guo, Kai Lu, Jiguang Wan, Daohui Wang, Ting Yao, and
Huatao Wu. 2024. Rcmp: Reconstructing RDMA-Based Memory Disaggregation
via CXL. ACM Transactions on Architecture and Code Optimization 21, 1 (2024),
1–26.

[22] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[23] Daniel Zahka and Ada Gavrilovska. 2022. FAM-Graph: Graph Analytics on Dis-
aggregated Memory. In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 81–92. https://doi.org/10.1109/IPDPS53621.2022.00017

https://doi.org/10.1145/3606557.3606563
https://doi.org/10.1145/3606557.3606563
https://api.semanticscholar.org/CorpusID:119079649
https://api.semanticscholar.org/CorpusID:119079649
https://doi.org/10.1145/3669900
https://doi.org/10.1109/RESDIS56595.2022.00006
https://doi.org/10.1109/RESDIS56595.2022.00006
https://doi.org/10.1109/ACCESS.2023.3250407
https://doi.org/10.1109/ACCESS.2023.3250407
https://doi.org/10.1109/MM.2023.3237491
https://doi.org/10.1145/3615979.3656059
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/3381831
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/IPDPS53621.2022.00017

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	3 Isoefficiency As a Metric
	4 Evaluating Isoefficiency
	4.1 Algorithm: Sparse matrix multiplication
	4.2 Input: Recursive-Matrix Traversal (R-MAT)
	4.3 Simulator: Disaggregated Memory System
	4.4 Traditional: 2-socket Shared Memory Node

	5 Experimental Results
	5.1 Traditional 2-Socket Computing Results:
	5.2 Simulation Results

	6 Summary and Future Work
	7 Acknowledgements
	References

