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Abstract
Ransomware has emerged as one of the most prevalent and evolv-
ing cybersecurity threat in recent times, posing significant risks
due to its potential to cause substantial financial damage and its
ability to hold important data hostage. Numerous approaches have
been proposed to defend against ransomware at the SSD controller.
In this paper, we propose a novel SSD-level defense solution called
Cache Assisted Ransomware Detection and Recovery (CARDR),
that leverages the DRAM cache of the SSD to counter the poten-
tial ransomware attacks. CARDR extracts features from both the
DRAM cache and incoming I/O requests for the early detection of
ransomware using a machine learning model such as a decision
tree. Additionally, CARDR effectively reduces data recovery over-
head, making it a robust solution against evolving ransomware
threats. Our experimental results demonstrate that CARDR helps
in the early detection of ransomware. On average CARDR takes
∼11 seconds as compared to SSDInsider++ (baseline) which takes
∼14 seconds for ransomware detection. For data recovery, CARDR
reduces the size of the recovery queue by ∼42% in comparison with
the baseline.

CCS Concepts
• Security and privacy→ Embedded systems security; •Hard-
ware→ External storage.
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1 Introduction
Ransomware is a type of malicious software that targets storage
devices like HDDs and SSDs and encrypts files, effectively holding
the data hostage. The attackers then demand a ransom payment in
exchange for providing the decryption key to restore access to the
affected data in the files. Recently, ransomware has emerged as one
of the most severe and significant cyber security threat, occurring
with alarming frequency [1, 32]. Recent reports indicate that a new
ransomware attack happens after every 11 seconds [28].

Over time, ransomware has evolved significantly. Attackers have
shifted their focus from targeting individuals to aiming at large
corporations and government organizations, driven by the potential
for higher financial gains and greater impact [24]. This transition in-
volves the development of more sophisticated ransomware variants
capable of infiltrating complex IT systems and evading sophisti-
cated security measures. Attackers also adopted new tactics, such
as double extortion, where they not only encrypt data but also
threaten to release sensitive information if the ransom is not paid.
The advent of Bitcoin further worsened the situation, making it

nearly impossible to trace the attacker when ransom payments are
made. Despite paying the ransom, there is neither the guarantee of
data recovery nor that the attack will not repeat, leaving the victims
in a vulnerable position. This evolution has made ransomware a
major threat to organizations worldwide.

Numerous techniques have been proposed to counter ransomware
attacks. Static approaches identify ransomware binaries before they
are executed on the system [17, 25]. Software-based approaches de-
tect ransomware by monitoring changes to the host system during
execution [15, 21, 30]. Additionally, backup-based approaches create
backup copies for data recovery [5, 31]. Several SSD-based solutions
combat ransomware at the SSD controller level by monitoring I/O
activities for abnormal patterns, such as sudden spikes in incoming
I/O requests and/or increased overwrites [2, 3]. Solutions such as
[19, 20] leverage entropy analysis at the SSD controller to identify
ransomware by examining the entropy of incoming data, entropy
is one of the strong indicators used in detecting ransomware ac-
tivities but demands additional hardware resources. SSD-based
ransomware defense solutions exploit SSD’s out-of-place update
property to recover pages encrypted by ransomware, assisting the
process of restoration of the SSD data to its pre-ransomware state.

Reliably detecting ransomware at the SSD controller is a chal-
lenging task due to the limited visibility of system-level information.
Each I/O request from the host system to the SSD controller includes
minimal context information in its header. To detect ransomware at-
tacks, machine learning models such as decision trees, Support Vec-
tor Machines (SVMs), and Convolutional Neural Networks (CNNs)
are trained using features extracted from I/O sequences of both
benign and ransomware applications. These models classify I/O
sequences as originating from either benign applications or ran-
somware. However, the predictions can sometimes lead to false
positives or false negatives, especially when ransomware mimics
the behavior of benign applications. In such scenarios, machine
learning models embedded within the SSD controller may struggle
to effectively protect data from ransomware attacks. Moreover, ad-
vanced machine learning models, such as Deep Neural Networks
(DNNs) and Recurrent Neural Networks (RNNs), require significant
computational resources that are typically beyond the capabilities of
a resource-constrained SSD device. Balancing effective ransomware
detection with the limited computational capabilities of SSD devices
remains a significant challenge.

Modern SSD devices incorporate an onboard DRAM cache [23]
to enhance performance and extend their lifespan. Pages destined
for the SSD are first passed to the DRAM cache, and evicted pages
from the DRAM cache are subsequently written to the flashmemory.
When a ransomware program attempts to encrypt multiple files
rapidly, the pattern of I/O requests recorded in the DRAM cache
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is likely to show sudden spikes or irregular access patterns. These
deviations from normal behavior can serve as warning signs for
ransomware attacks and provide clues for detection. By monitoring
these patterns, the DRAM cache can provide valuable insights for
possible early detection. Additionally, since the data is written to
the DRAM cache and stays in the cache for some time before being
written to the flash memory, the DRAM cache can also aid in data
recovery by holding encrypted data temporarily. This can reduce
the total number of encrypted pages that are actually written to the
flash memory. Hence, a DRAM cache can serve the dual purposes
of detection and data recovery, making it a critical component in
safeguarding against ransomware attacks.
Goal. This work aims to leverage the DRAM cache of SSDs for
ransomware detection and recovery. Specifically, investigating how
the context provided by the DRAM cache, along with the I/O infor-
mation from the incoming requests can facilitate earlier detection
of ransomware and, in turn minimize the overhead associated with
data recovery.

The paper makes the following contributions:

• We experimentally analyze the effectiveness of leveraging
DRAM cache in SSDs for ransomware detection and recov-
ery, introducing the Cache-Assisted Ransomware Detection
and Recovery (CARDR) method.

• We demonstrate that CARDR facilitates earlier ransomware
detection compared to the state-of-the-art detection mech-
anism, namely, SSDInsider++. CARDR detects ransomware
within 11.41 seconds on an average, compared to 14.31
seconds for SSDInsider++.

• We find that CARDR reduces the size of the recovery queue
by about 42% in comparisonwith the SSDInsider++, thereby
minimizing the overhead associated with the data recovery
process.

Organization of the remaining paper: Section 2 delves into
the background and ransomware detection/recovery related work.
Section 3 outlines the insights and motivation for our approach. The
proposed methodology, CARDR, is detailed in Section 4. Followed
by experimental evaluation in Section 5, and finally, the paper
concludes with Section 6.

2 Background and Related Work
2.1 Background

2.1.1 Different classes of Ransomwares. Rapid emergence of new
ransomware variants presents a serious threat, yet they can be
broadly categorized into two primary types: in-place write ran-
somware (Class A) and out-of-place write ransomware (Class B) [3].

Class A ransomware performs in-place write of encrypted pages,
causing the host system to write the encrypted page to the same
logical address from which it previously read it. This type of ran-
somware can be effectively detected by monitoring for specific
patterns of write-after-read operations. Figure 1 illustrates this pro-
cess: Class A ransomware reads a file_A from directory x, encrypts
it, and writes it back to the same directory x, using same LBA (log-
ical block address). Detecting this repetitive read-encrypt-write
pattern to the same LBA is a key indicator of Class A ransomware.

In contrast, Class B ransomware is relatively harder to detect
because it writes the encrypted pages to a different directory after
reading it from the original directory. As illustrated in Figure 1,
Class B ransomware first reads a file from directory x, encrypts
the file contents, and then writes the encrypted file to another di-
rectory (say) y. Finally, removing the original file from directory x.
Detecting this type of ransomware is challenging because it does
not perform overwrite operation, which is common in most ran-
somware variants. Ransomware detectors at the SSD controller can
be easily misled by Class B ransomware because a write-intensive
application is likely to have a similar activity of reads and/or writes
to disjoint LBAs.

2.2 Related Work
There are various types of ransomware, each with distinct charac-
teristics and methods of attack [8]. The existing literature offers
multiple solutions to safeguard against these threats. In this work,
we specifically focus on Crypto-Ransomware. The following sec-
tions detail the solutions available for combating this particular
type of ransomware.

2.2.1 Static analysis. This technique, also known as signature-
based detection, is one of the classical malware detection methods
[17, 25]. It aims to identify potential ransomware attacks before an
actual attack occurs. In this approach, the malware/ransomware
binary is analyzed, and code string patterns are extracted from
the ransomware binary using tools such as PE-Studio [27] to find
possible indications about the presence of the ransomware. The
extracted signatures are then compared with known malware sig-
natures from online resources like VirusTotal [29], that provides
hints about the presence of any malware in the binary file. However,
this method does not always perform well because the signature
database might not be updated with the continuously evolving
ransomware variants.

2.2.2 Dynamic analysis. In thismethod the presence of ransomware
is identified by monitoring the system changes that occur after a
ransomware binary is executed on the system [15, 21, 30]. This
approach entails running a ransomware binary in a controlled en-
vironment and monitoring the subsequent changes occurring in
the system. Commonly observed changes include process creation,
high memory usage, file type modifications, high frequency of data
read and/or write operations [15], and high entropy value of newly
written data. These methods impose significant overhead on the
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Figure 2: Offline profiling insights for benign and ransomware applications. Red indicates ransomware, and blue indicates
benign applications.

CPU and memory, as they require real-time monitoring of large
amounts of data, placing an extra burden on the system resources.
Further, these methods are vulnerable to new ransomware vari-
ants that are increasingly trying to mimic the behavior of benign
applications, making them less effective against evolving threats.
Methods like [7, 9, 14] have been developed to safeguard against
ransomware threats using machine learning at the host system.

2.2.3 SSD level solutions. Many SSD-level solutions have been pro-
posed in the literature to safeguard data stored on SSDs against
ransomware attacks. These solutions leverage internal characteris-
tics of flash memory, such as out-of-place updates and erase-before-
write properties. The out-of-place update feature requires the SSD
controller to write each overwritten page to a new location, while
the old page remains on the flash memory in an invalid state until
garbage collection (GC) is invoked. This out-of-place update feature
can provide a potential opportunity to recover data if it has been
encrypted by a ransomware attack.

FlashGuard [13] aims to defend against ransomware by imple-
menting a backup strategy for each page. It introduces an additional
page state, termed the backup state, alongside the valid and invalid
states of a flash memory page. Pages suspected of being encrypted
due to a Write-After-Read (WAR) pattern are marked as backup
pages. Unlike regular pages, these backup pages are not imme-
diately subjected to GC, allowing them to be retained. However,
while FlashGuard effectively preserves SSD data, it has significant
overhead in terms of space consumption, limiting its practicality as
a solution.

SSDInsider [2] detects ransomware by analyzing the header of
each I/O request, which includes details like the LBA, read/write
operation, and length of data. It monitors metrics such as the num-
ber of erases, the ratio of a number of erases to the number of
writes, length of erased data over a time period to differentiate
between I/O sequences originating from benign or ransomware
applications. Additionally, SSDInsider++ [3] enhances this by in-
corporating background checks on the entropy of written data,
alongside the features used in SSDInsider [2], for more robust ran-
somware detection. SSDInsider++ is prone to false positives and
false negatives. SSDInsider++ handles the data recovery using a
recovery queue that stores previous address mappings of encrypted

pages, facilitating rollback from the ransomware state to the pre-
ransomware state.

RansomBlocker [20] defends against ransomware attacks us-
ing hardware accelerators to compute the entropy of incoming
write requests. Meanwhile, methods like [18, 19] detect ransomware
through content-aware analysis, calculating the Ransomware At-
tack Risk Indicator (RARI) based on the entropy of each page after
it is written to flash memory. RansomBlocker utilizes convolu-
tional neural networks (CNNs) to effectively detect and alert about
ransomware attacks. In this work we are focusing only on crypto-
graphic ransomware types.

3 Insights and Motivation
3.1 Features of Ransomware and Benign

Applications
We conduct offline profiling of I/O requests from trace files of
both benign and ransomware applications. Detailed information of
these applications and experimental setup is provided in Section 5.
Through a thorough analysis of these raw trace files, we identify
several key features that differentiate ransomware application exe-
cution from benign application behavior.

3.1.1 Overwrite Ratio. The overwrite ratio is the proportion of
write operations performed on pages that have previously been
read by the host system, relative to the total number of read requests.
Ransomware operates by reading pages from the flash memory,
encrypting the data with a cryptographic algorithm, and writing the
encrypted pages back to the flash memory. As illustrated in Figure
2a, ransomware applications tend to exhibit a high percentage of
overwrites, while benign applications show a comparatively low
percentage of such overwrites. This pattern, where ransomware
frequently reads and then writes back to the same address can
serve as a one of the key indicators to distinguish ransomware
applications from benign applications.

3.1.2 Overwrite Interval. The overwrite interval is the time be-
tween reading a page and writing it back. From the observed aver-
age overwrite times depicted in Figure 2b, it can be concluded that
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(a) Normalized I/O Requests. (b) Normalized Cache Dirty Evictions. (c) Normalized Cache Overwrites.

Figure 3: DRAM cache behavior for Wannacry ransomware and data-compression (benign) application. The Y-axis presents the
numbers in the multiples of 1K.

different ransomware samples exhibit varying overwrite behav-
iors. Some ransomware variants demonstrate rapid overwrites in
short bursts of less than 10 seconds, indicating aggressive encryp-
tion tactics. In contrast, other ransomware variants exhibit delayed
overwriting, taking more than 20 seconds to perform overwrites,
resembling the behavior of benign applications.

This variability highlights the difficulty of detecting ransomware
based solely on overwrites, as the pattern can differ significantly
among different ransomware implementations. Therefore, effective
ransomware detection mechanisms must consider a broader range
of behavioral indicators and patterns beyond the overwrites to
accurately distinguish ransomware from benign applications.

3.2 DRAM Cache for Ransomware Detection
and Recovery

Flash memory has asymmetric read and write operations, with
write operations typically taking about ten times longer than read
operations [16],[4]. Additionally, it faces challenges concerning
its lifespan and endurance [12], [22]. To effectively handle these
inherent issues of flash, an onboard DRAM cache is used to provide
uniform read and write speeds [26]. The DRAM cache intercepts
write requests destined for flash memory and serves frequently
accessed reads directly from itself, reducing the I/O activity of the
flash memory, thereby extending SSD lifespan and performance.

When a ransomware application runs, it attempts to encrypt
multiple files rapidly, leading to distinct patterns of I/O requests
recorded in the DRAM cache. These patterns result in sudden spikes
of I/O request processing per unit time, an increased number of
cache overwrites, and a higher number of dirty page evictions. Fig-
ure 3a illustrates the normalized value of number of cache requests
per second (normalized to 1K) for both benign and ransomware ap-
plications. And Figures 3c, and 3b illustrate the normalized values of
cache overwrites and dirty page evictions per second, respectively,
using the same normalization. Ransomware’s write-after-read be-
havior leads to an increased number of write hits in the DRAM
cache. The elevated I/O activity of ransomware triggers more fre-
quent dirty page evictions from the cache.

Such abnormal access patterns and activity spikes provide valu-
able hints that help distinguish ransomware from that of benign
applications. Furthermore, the DRAM cache plays a crucial role
in data recovery. Once a ransomware attack is detected, some of

the encrypted pages may still reside in the DRAM cache, reducing
the need for rollback for those pages as they have not yet been
written to the flash memory and the original files are not marked
invalid. Thus DRAM cache can help reduce the data recovery time
by decreasing the number of encrypted pages written to the flash
memory. Hence, we find that the DRAM cache can play a vital role
in both detection and data-recovery from ransomware attacks.

4 Design of Cache Assisted Ransomware
Detection and Recovery (CARDR)

4.1 Basic Idea
CARDR operates at the SSD controller to safeguard against ran-
somware attacks. CARDR continuously monitors incoming I/O
requests from the host system, extracting features from the re-
quests and the activities in the DRAM cache in order to service
these requests. Every second, it samples these features and passes
them to a machine-learning model, such as a decision tree, in the
form of a feature vector. The decision tree is trained to detect ran-
somware patterns. If it indicates the presence of ransomware for
𝑘-consecutive time slices, CARDR alerts the host system about
the threat. In response, the incoming I/O requests to the SSD are
halted, and the SSD controller initiates the data recovery process.
CARDR uses a recovery queue that stores LBA-to-PPA (physical
page address) translations for encrypted pages. This queue retains
mapping entries of LBAs, linking them to their previous PPAs. Dur-
ing the data recovery process, mappings in the recovery queue are
updated in the SSD’s mapping table, effectively restoring the SSD
to its pre-ransomware attack state.

4.2 Working of CARDR
The flowchart depicted in Figure 4 outlines the CARDR’s process
of ransomware detection. Initially, 1 incoming requests from
the host system are directed to the SSD device. Subsequently, 2
feature extraction process starts by sampling incoming I/O requests
over a specified time period (or slice), extracting key features from
both the I/O requests and the ongoing DRAM cache activities. At
the end of each time slice, these extracted features are consolidated
into a feature vector, which is then fed into a decision tree. The
decision tree evaluates each feature to predict the presence of ran-
somware 3 or benign activity 4 . To ensure robust detection,



CARDR: DRAM Cache Assisted Ransomware Detection and Recovery in SSDs

Sampling & Feature
Extraction

 

Host System

Stream of IO
Req1

2 Time Slice
Expires

Feature Vector

Decision
Tree

Confidence
Checker

Continue
Monitoring

Benign

Negative

P
o
s
i
t
i
v
e

3 4

5
6

Data Recovery
Module

7

Ransomware

Figure 4: Flowchart explaining the process of ransomware
detection in CARDR.

CARDR incorporates a confidence checker. When the confidence
checker indicates possibility of benign activity 5 , no further
action is taken. However, 6 if the decision tree indicates the
possibility of ransomware over 𝑘-consecutive time slices, CARDR
flags the presence of ransomware, prompting the SSD controller to
halt incoming I/O requests, 7 alerts the host system about the
ransomware and initiate data recovery procedures.

4.2.1 Feature Extraction Process. The feature extraction process
in CARDR involves sampling the incoming I/O requests directed
to the SSD over a specified time, similar to the approach used in
SSDInsider++. At the end of each one-second time slice, CARDR
extracts the values of predefined features from the incoming I/O
requests and DRAM cache activities. These feature values are then
compiled into a feature vector, and the feature variables are reset,
preparing for the next time slice. This continuous sampling and
feature extraction ensures that, from time-to-time the feature vector
accurately represents the ongoing I/O activity, providing the nec-
essary context for the machine learning model to detect potential
ransomware attacks.

4.2.2 Features extracted for Ransomware detection. CARDR ex-
tracts features from incoming I/O requests and the activities trig-
gered by these I/O requests at the DRAM cache. Features derived
from the cache are known as cache-driven features, while those
extracted directly from the I/O requests without any cache involve-
ment are non-cache-driven features. The extracted features are fur-
ther categorized into two classes: primary features and secondary
features. The primary features capture the system’s behavior in real-
time, within the current time slice of 1 second. To provide a broader
context, we also track the system’s historical behavior using a n-1
second time window, organized as a circular list, representing the
system’s activities over the past n-1 seconds. This dual-class feature
extraction approach, illustrated in Figure 5, enables us to capture

both current and historical behaviors, offering a comprehensive
view of the system’s activities. This thorough analysis allows for a
more reliable ransomware detection. We use a value of 10 for n.

(i) Cache-driven features: There are four important cache-driven
features that CARDR uses for ransomware detection.
1. Cache Overwrites (CO): CO is collected for each time slice
and is governed by the write-after-read property of ransomware.
When data is requested from the host system, it is retrieved from
the flash memory in case of a cache miss, and then forwarded to
the host system, and a copy of this data is maintained (until the
time of eviction) in the DRAM cache of the SSD to exploit temporal
or spatial locality. In case there is another read or write request
from the host for this data, it will result in a DRAM cache hit. CO
represents the count of cache write hits per time slice, indicating
the number of pages that have been overwritten in the cache. Ran-
somware samples typically exhibit a quick write-after-read pattern,
resulting in a higher value of cache overwrites compared to benign
applications. Tracking this feature provides a useful indicator of
the presence of ransomware.
2. Cumulative Cache Overwrites (CCO): In order to avoid detec-
tion due to sudden spikes in the write activity, some ransomware
samples may spread the writes resulting in cache overwrites over
an extended time slices. These writes are potentially missed if the
observation window is small. To account for such delayed overwrite
patterns of ransomware, we use the cumulative cache overwrite
feature. This feature provides the total number of cache write hits
over the last n-1 time slices. It is extracted by placing the CO values
in a circular queue and returning the sum of the last n-1 COs from
the queue.
3. Dirty Evictions (DE): As ransomware begins execution, it starts
reading and/or writing data in a burst manner. Burst reads cause
more pages to be loaded into the cache from the flashmemory, while
burst writes involve either overwriting existing pages (write-hits)
in the cache or writing new pages (write-miss) to it. This burst I/O
activity can result in increased eviction of pages from the DRAM
cache, possibly leading to a higher count of dirty page evictions.
This pattern is particularly noticeable in ransomware samples. To
monitor such activity, we use Dirty Evictions (DE), that is a counter
to keep track of the number of dirty page evictions from the DRAM
cache within a time slice, providing a key indicator of ransomware
activity.
4. Cumulative Dirty Evictions (CDE): CDE tracks the total num-
ber of dirty pages evicted from the DRAM cache over a time win-
dow. This metric provides a cumulative measure of how frequently
pages have been evicted from the cache due to burst overwrite
characteristics of ransomware. Unlike Dirty Evictions (DE), that
captures evictions per time slice, CDE offers a broader perspective
by accumulating these evictions over the last n-1 time slices. This
cumulative view helps in understanding the sustained impact of
ransomware behavior on the DRAM cache eviction.

(ii) Non-Cache Driven features: There are three important non-cache
driven features that CARDR uses for ransomware detection.
1. Erases or Overwrites (OV): The erase feature OV is a critical
metric in detecting Class A ransomware. This ransomware family
exhibits a distinctive behavior in that it writes to the same logical
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Figure 5: Extracted cache-driven and non-cache driven features used in CARDR.

address from which data was previously read. OV is computed by
analyzing the I/O requests contributing to these erase operations
occurring within each second. Unlike cache write hits, which focus
on tracking overwrites only when the page is present in the cache,
OV monitors all I/O operations which are previously read and
subsequently written back to the same LBA. OV ensures that even
if pages are evicted from the cache, the erase operations are still
accurately counted.
2. Cumulative Overwrite (COV): This feature captures the persis-
tent overwrite patterns observed over a defined time window. This
feature provides historical context on the frequency of erases occur-
ring as ransomware executes. It sums up the number of overwrite
operations performed within the last n-1 time slices.
3. Erase Length (E): This feature measures the total size of data that
has been overwritten during a time slice. Ransomware applications
tend to perform more erase operations compared to benign appli-
cations, resulting in higher erase data lengths. Additional features
extracted from the erase length include:

• Average Erase Length (AEL): This provides the average
size of erase operations during the current time slice. AEL
is calculated by dividing E by OV.

• Cumulative Erase Length (CEL): This feature represents
the total erase length over the last n-1 time slices. It captures
the cumulative size of data overwritten, providing insight
into the long-term behavior of the application.

• Cumulative Average Erase Length (CAEL): This feature
indicates the average erase length over the past n-1 time
slices, reflecting the sustained overwrite behavior of the
application over a longer period.

4.3 ML Model in CARDR
Given the limited computational resources of SSD controllers, se-
lecting an efficient and lightweight machine-learning model for
ransomware detection is crucial. We chose a supervised learning
algorithm, decision tree for its simplicity and low resource require-
ments, making it well-suited for this constrained environment. The
choice of a decision tree is carefully balanced between maintaining

prediction efficiency and adapting to the limited resources avail-
able at the SSD controller. Unlike more complex models like Deep
Neural Networks (DNNs) and Recurrent Neural Networks (RNNs),
which demand significant computational power, the decision tree
offers a minimal computational footprint. It works by dividing the
dataset into branches based on key features, creating an "if-then"
logic path for decisions. This straightforward structure integrates
easily with existing simulator code, as the tree’s branching deci-
sions translate into simple conditional statements with predictions
as return values.

Figure 6 depicts the decision tree CARDR uses for detecting
ransomware threats, the features are displayed at the internal and
root nodes of the tree, while the leaf nodes represent the predictions
made by the decision tree. For instance, if the value of COV exceeds
1000 and the CAEL value is greater than 570, the decision tree
classifies the application as ransomware. Conversely, if the CAEL
is below 570, the application is classified as benign. Similarly, if the
COV is less than 1000 but CDE exceeds 17,000, the application is
identified as ransomware. The decision tree continues to apply these
criteria across other scenarios. Algorithm 1 provides a pseudo-code
of CARDR’s detection algorithm, .

4.4 Data Recovery in CARDR
When CARDR’s detection module alerts about a ransomware attack,
the SSD controller invokes the data recovery module. CARDR’s
data recovery module is designed to roll back changes caused by
ransomware and restore the SSD to its pre-ransomware state. This
module operates within the Flash Translation Layer (FTL) of the
SSD. CARDR leverages the out-of-place update feature of SSD to
facilitate data recovery. When an updated page is written to the
flash memory, it is written to a new flash memory page, while
the old copy of the same page remains on the flash memory in an
invalid state until GC reclaims the pages. The address mapping in
the mapping table is updated to point to the new PPA. Until the
invalid page is erased by GC, the old page can always be rolled back
by updating the entry in the mapping table to point to the old page.
This mechanism allows the system to revert to the old copies of
pages if ransomware activity is detected.
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Algorithm 1 Ransomware Detection

1: function DetectRansomware(n)
2: counter← 0
3: for each I/O request do
4: featureVector← ExtractFeatures()
5: if time slice expires then
6: MLOutput← predict(featureVector)
7: if MLOutput == Ransomware then
8: counter← counter + 1
9: if counter == 𝑘 then
10: AlertHost("𝑅")
11: DataRecovery
12: break
13: end if
14: else
15: counter← 0
16: end if
17: end if
18: end for
19: end function

CARDR utilizes a recovery queue similar to that of SSDInsider++
that contains themapping entries of pages encrypted by ransomware.
Each entry in the recovery queue consists of a pair of logical-to-
physical address mappings. Essentially, it holds mapping entries
of LPA’s pointing to the old PPA’s of encrypted pages, the original
physical pages from which data was read. This allows CARDR to
identify the old flash pages and restore them back.

CARDR identifies pages that are first read by the host system
and subsequently written back to the flash memory by leveraging
the address mapping table. CARDR modifies the mapping table
structure by introducing an additional bit called ReadBit (RB) with
each entry of the mapping table. RB acts as a flag to categorize
pages that have undergone a write-after-read sequence, effectively
classifying them as encrypted pages.

When the host system issues a page read request, the mapping
table provides the address translation for the corresponding LBA.
After obtaining the PPA from the mapping table, a page is read
from the flash memory. Once the read operation from the flash
memory is completed, RB associated with the corresponding LBA
in the mapping table is set. This RB if set indicates that the page
has been successfully read from the flash memory.

During a page write request to the flash memory, if the mapping
table shows the RB set for the corresponding LBA, it signifies that
the pagewas previously read and is now beingwritten back. CARDR
identifies such pages as encrypted pages. Before updating the PPA
in the mapping table, CARDR adds the LBA and its current PPA to
the recovery queue. Subsequently, it updates the mapping table so
that the LBA points to the new PPA while retaining the old PPA
in the recovery queue. The RB for the LBA is reset, indicating that
the page is no longer a write-after-read page.

Upon detecting a ransomware threat, the recovery module is
activated to perform the data recovery by scanning through the
entries in the recovery queue, taking each entry from the queue,
and updating them in the mapping table. CARDR restores the SSD
to its pre-ransomware state by rolling back the encrypted pages.

Data recovery process in CARDR. In Figure 7, the detailed flow
of the data recovery module in CARDR is depicted. 1 Incoming
I/O requests from the host system are placed in the DRAM cache.
2 If it is a read request and is a cache miss, the requested page
is to be fetched from the flash memory. 3 The address mapping
is obtained from the address mapping table. 4 Upon obtaining
the PPA from the address mapping table, the corresponding page is
read from the flash memory and is placed into the DRAM cache. 5
RB bit of the corresponding LBA is set to signify that this page has
been read from the flash memory. 6 When a dirty page is evicted
from the DRAM cache, it has to be written back to the flash memory
on the address provided by the mapping table. If the mapping entry
exists in the mapping table, 7 the RB bit is checked. If it is set, it
means that the corresponding page was previously read from flash
memory and is now being written back. CARDR classifies this write
as an encrypted write and 8 copies the LBA to PPAmapping from
the mapping table into the recovery queue. 9 The mapping entry
in the mapping table is modified by pointing the LBA to the new
PPA. 10 page is then written to the flash memory pointed by the

new PPA, and at the same time, 11 the RB bit is reset, signifying
that the corresponding page has no longer been read from the
flash memory. 12 Upon invocation of the data recovery process,

CARDR scans through the recovery queue, and 13 updates the
mapping entries in the mapping table by corresponding entries
from the recovery queue, which effectively rolls back the SSD state
to its pre-ransomware state.

5 Experimental Setup
To evaluate the efficiency of CARDR, we implemented it using the
state-of-the-art SSD simulator, SimpleSSD-Standalone [10]. This
simulator offers a detailed model of an SSD system, encompassing
the cache subsystem, FTL, NAND flash array, and SSD interface,



Waqar Hassan Mir, Neeraj Goel, and Venkata Kalyan Tavva

Host System

Stream of
IO Req 1

DRAM Cache LBA PPA

A X

B Y

C Z

RB

1

Cache Read
miss request

for LBA

2

Get PPA from
mapping Table and
Read from Flash

3
Mapping Table

Set Read
bit

4

(A,X) (B,Y)

Recovery Queue

Dirty
Eviction

6

Check if RB
is set7

If RB set then insert
  LBA -> PBA

 in recovery queue
8

10

Fl
as
h

Wr
it
e

5

Place in
Cache

X'

Y'

9

Update PPA
 X -> X'

Data
Recovery

12

Process each entry from the
recovery queue and update the

old value of the PPA

13

11 Reset Read
bit

0

Flash Memory

Figure 7: Data recovery process in CARDR.

Table 1: Simulation Configurations.

Configuration Parameter Value
Simulator SimpleSSD2.0
SSD Size 128 GB
Channels 2
Chips 4
Die 8
Plane 64
Block 128
Pages 64
Page Size 4KB
DRAM Cache 128MB
DRAM Cache Page Size 4KB
DRAM Eviction Policy LRU
Baseline Victim Block Selection Greedy Algorithm

among other components. The specific configurations of the simu-
lator used in our experiments are detailed in Table 1.

We compared the performance of CARDRwith SSDInsider++ [3],
focusing on two key metrics: ransomware detection time and data
recovery overhead. Our tests measured how quickly each method
detected ransomware and the associated overhead for data recovery.
The results of these comparisons highlight the effectiveness of
CARDR in both detecting ransomware promptly and minimizing
recovery time.

For the implementation of SSDInsider++ and CARDR on the
SimpleSSD-Standalone simulator, we modified the Host Interface
Layer (HIL) code of the simipleSSD2.0 to incorporate the logic of
the ransomware defense methods. SSDInsider++ also observes in-
coming I/O requests and extracts features from these requests. Both
SSDInsider++ and CARDR utilize a decision tree model trained on
a dataset containing known ransomware and benign applications.

We used Python scripts to train the decision tree for both SSDIn-
sider++ and CARDR. The training involved various combinations

of training and testing datasets, as detailed in Table 3. Each com-
bination produced different detection accuracies. We selected the
decision tree that achieved the highest accuracy and incorporated
its c_code into the simulator in the form of "if-then" statements.

This experimental setup allowed us to rigorously test and com-
pare the performance of CARDR and SSDInsider++, ensuring re-
liable and early detection of ransomware while maintaining high
detection accuracy.

5.1 Ransomware and Benign Application
Dataset

Table 2: Workload Details.

Application Dataset IO’s(M) Write Ratio

Ransomware

TeslaCrypt (R1) Ransap 3.32 49.77
Cerber (R2) Ransap 3.13 47.52
WannaCry (R3) Ransap 8.92 61.26
GandCrab (R4) Ransap 7.17 50.41
Ryuk (R5) Ransap 1.91 49.40
Sodinokibi (R6) Ransap 1.14 38.06
Darkside (R7) Ransap 0.52 58.24

Benign

AESCrypt (B1) Ransap 1.21 46.13
Zip (B2) in-house 0.063 23.44
Data Compression (B3) in-house 0.18 27.70
Download (B4) in-house 0.035 43.65
NormalExecution (B5) in-house 0.67 31.81
Fragmentation (B6) in-house 0.269 44.45

To validate CARDR, we utilized the Ransap [11] dataset, a pub-
licly available collection containing time series storage access pat-
terns of various well-known ransomware and benign applications
provided in the form of trace files. Each trace file contains I/O
requests, where each request is accompanied by its arrival time in-
formation. The I/O requests in the trace file are sorted according to
their arrival times and have been collected via a hypervisor. Ransap
is being extensively employed for ransomware research studies,
enabling the analysis and comprehension of behaviors exhibited
by various ransomware and benign applications.

To enrich our dataset, we collected the I/O access patterns of sev-
eral benign applications. These include monitoring tasks such as zip
file extraction, memory fragmentation, and data compression, and
the I/O sequences from Internet data downloading. Each applica-
tion was closely observed to capture its unique I/O access patterns.
For the I/O collection, we utilized the DiskMon utility from Sys-
internals, operating on the Microsoft Windows operating system
[6]. This utility allowed us to monitor and log the I/O activities
performed by various applications. Table 2 provides comprehensive
details of I/O traces of various ransomware and benign applications.
Traces obtained from the Ransap repository are distinguished with
the "Ransap" label, while traces collected using the Diskmon util-
ity are labeled as "In-house". This categorization allows for a clear
differentiation between the sources of the IO traces, facilitating a
thorough understanding of the dataset’s composition and origin.
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Ransomware applications

(a) GandCrab (b) Cerber (c) Darkside

(d) Wannacry (e) TeslaCrypt (f) Sodinokibi

Benign applications

(g) Downaload (h) Normal Execution (i) Fragmentation

(j) AesCrypt (k) Compression (l) Zip

Figure 8: Behavior exhibited by ransomware and benign applications across different time intervals in CARDR and SSDInsider++.

5.2 Evaluation of Detection Algorithm
To evaluate the effectiveness of the CARDR’s detection module,
we focused on detection time as the primary metric. Detection
time within the context of ransomware refers to how quickly the
system identifies ransomware activity once it begins execution.
Comparing CARDR with SSDInsider++, we observed that CARDR

consistently detected ransomware more swiftly. Figure 9 illustrates
this, showing CARDR taking less time for ransomware detection
as compared to SSDInsider++. The features used by SSDInsider++
rely solely on erasures, whereas CARDR utilizes additional cache-
driven features. This enables CARDR to achieve a lower detection
latency of ∼11 seconds, compared to SSDInsider++, which takes
∼14 seconds for ransomware samples like Darkside, Gandcrab,
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Table 3: Five combinations of test and training sets along
with accuracy.

# Training Set Testing Set CARDR
Accuracy

SSDInsider++
Accuracy

1 R1, B6, R7, R4,
B1, R5, B5

R6, B2, R2,
B4, B3, R3

0.9896 0.9842

2 R4, R7, B3, R3,
R5, B1, B5

R1, R6, B2,
B6, B4, R2

0.9125 0.9865

3 R6, B2, R4, B4,
R7, R3, B5

R1, B6, B3,
R5, B1, R2

0.8925 0.9784

4 R1, B2, R4, B4,
R5, B1, R2

R6, B6, R7,
B3, B5, R3

0.6975 0.7686

5 B2, R4, R7, B3,
R3, B1, R2

R1, R6, B6,
B4, R5, B5

0.6332 0.8968

Figure 9: Ransomware detection latency.

and Sodinokibi. In contrast, for other ransomware samples such
as WannaCry, Ryuk, and Cerber, CARDR and SSDInsider++ have
similar detection latencies. To further understand the detection
module’s timing latency, we plotted several graphs showing the
probability of ransomware at various time intervals during exe-
cution for both benign and ransomware applications. Individual
timing graphs for each ransomware and benign application show
the differences clearly.

In Figure 8, the first section of the graphs represents the ran-
somware applications. We observe that the ransomware probability
reaches its highest level for samples like TeslaCrypt, WannaCry,
and GandCrab within 10 seconds due to the burst I/O and high
erasure count exhibited by these ransomware applications. The
Cerber ransomware, which employs delayed overwriting is de-
tected around the 29𝑡ℎ second by both SSDInsider++ and CARDR.
In contrast, for ransomware applications like Darkside, Gandcrab
and Sodinokibi, cache-driven features help CARDR detect them
much faster compared to SSDInsider++. This is evident in the Fig-
ures 8c, 8a, and 8f, where the ransomware probability for CARDR
rapidly converges to the highest value for Darkside, GrandCrab
and Sodinokibi samples, outperforming SSDInsider++.

Similarly, for benign applications, the plotted graphs for appli-
cations like Fragmentation, Data-Download, Normal Execution,
Data Compression, and Zip, we notice that CARDR quickly shows

the probability of ransomware approaching to zero more swiftly
than SSDInsider++. However, for applications like AesScript that
exhibit behavior similar to ransomware, the timing diagrams indi-
cate that both SSDInsider++ and CARDR classify this application
as ransomware. This classification raises the possibility of false
positives in detection.

5.2.1 Detection threshold. To minimize the count of false positives
and false negatives, we implement a threshold counter. This thresh-
old counter controls the maximum number of consecutive outputs
from the machine learning model required to reliably classify an
application as ransomware or a benign application. This approach
ensures more accurate predictions by allowing the model to con-
firm its decision over multiple time slices before making a final
classification.

Table 4 consists of five columns, each representing different
aspects of our evaluation metrics. The first column lists the thresh-
old values used for detection. The second column is labeled ran-
somware detected as ransomware (RR), indicating the number of
applications that were originally ransomware and were correctly
identified as ransomware by the detection module. The third col-
umn, ransomware detected as benign (RB), represents the count of
applications that were originally ransomware but were incorrectly
classified as benign. Similarly, the fourth column, benign detected
as ransomware (BR), shows the number of benign applications that
were mistakenly detected as ransomware. The fifth and final col-
umn, benign detected as benign (BB), reflects the count of benign
applications that were correctly identified as benign.

Table 4: Impact Of different threshold values on detection
accuracy.

Threshold RR RB BR BB
1 7 0 3 3
2 7 0 2 4
3 7 0 1 5
4 7 0 1 5

From the data presented, it is evident that starting with a thresh-
old value of 3, the detection module consistently identifies all ran-
somware applications correctly (RR). However, there are still some
false positives present, as indicated by the BR column, where one
benign application out of six is incorrectly classified as ransomware.
This observation highlights the trade-off between improving true
positive rates and minimizing false positives, emphasizing the im-
portance of selecting an optimal threshold value to balance detec-
tion accuracy and reliability. Additionally, a higher threshold value
results in a larger recovery queue, which introduces another trade-
off between accuracy and recovery overhead that must be carefully
considered.

5.3 Recovery
To evaluate the effectiveness of the CARDR’s recovery module,
we focused on the number of pages needed to rollback upon a
ransomware presence alert generated by the CARDR’s detection
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Figure 10: Normalized recovery queue length, normalized by
recovery queue length of SSDInsider++.

module. We compared the length of the recovery queue of CARDR
with SSDInsider++. Figure 10 presents the recovery queue length of
CARDR normalized by the recovery queue length of SSDInsider++.
CARDR reduces the recovery queue length by an average of 42%
compared to SSDInsider++. This reduction in the length of the
recovery queue is due to the DRAM cache holding the encrypted
pages, preventing them from being written to the flash memory. We
have not shown the bars for ransomware samples like Darkside
and Sodinokibi in Figure 10. For these ransomware samples, the
size of the recovery queue is almost zero. The ransomware signal is
generated when all the encrypted pages are present in the DRAM
cache. For such ransomware, CARDR achieves a 100% reduction
in the recovery queue, meaning that no rollback is necessary. To
combat the ransomware attack, it is sufficient to just flush the
contents of the DRAM cache. For TeslaCrypt, CARDR generates a
slightly longer recovery queue compared to SSDInsider++. This is
due to the burst I/O behavior of TeslaCrypt and CARDR detecting
TeslaCrypt one second later than SSDInsider++.

6 Conclusion
Ransomware attacks are rapidly increasing. Solutions like SSDIn-
sider++, which operates at the SSD controller, represent a promising
direction in combating these threats. However, since modern stor-
age systems such as SSDs utilize DRAM caches for performance and
lifespan enhancement, it is crucial that machine learning models
for ransomware detection incorporate features from DRAM caches
for early detection. CARDR leverages these DRAM cache-driven
features for the early detection of ransomware and reduces the
size of the recovery queue, thereby minimizing rollback overhead
during data recovery. Looking ahead, CARDR’s effectiveness can
be further enhanced by training it with sophisticated neural net-
work models, provided there is sufficient budget for deploying these
models at the SSD controller level.
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