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ABSTRACT
Compute Express Link (CXL) is an important emerging standard for
disaggregated memory. While this standard provisions coherency
across numerous hosts and devices, implementing hardware sup-
port for type three devices is challenging. In this work, we look
at the overhead of software synchronization and using software-
based coherency. Moreover, we discuss the limits of software-based
coherency in fully expressing modern synchronization techniques
for a CXL-based disaggregate memory system. We demonstrate our
approach using a CXL hardware prototype and running a version
of the famous Peterson Lock (enhanced to run with more than two
threads). We analyze its performance and share howmore advanced
synchronization techniques might interact with software-based co-
herence CXL hardware and program execution models.

1 INTRODUCTION
With the advent of Fabric Attached Memory (FAM), the prospect of
a more cost-efficient memory provisioning that addresses capacity
and system bandwidth requirements is an essential motivator for
hyperscalers. While this aspect will help drive the maturation of
this technology on its own, interesting questions arise for comput-
ing communities that could leverage FAM for their own specific
purposes.

The hallmark of High-Performance Computing (HPC), and more
concretely Machine Learning (ML), is a parallel/distributed execu-
tionmodel (EM) that relies on lightweight task creation/termination
and synchronization (including exclusion and collectives), as well
as fast data distribution and communication. It stands to reason
that FAM, within some degree of locality, should hold the promise
of facilitating efficient implementations of parts of an HPC EM;
even more so, if the memory is enhanced with smarts provided by
Near Memory Computing (NMC) acceleration.

FAM, in its incarnation as Compute Express Link (CXL) [1], has
been gaining momentum, subsuming the likes of CCIX [2] and Gen-
Z [3], and represents an ideal platform to test that hypothesis. In its
3.x version, CXL now supports multi-host, multi-device switched
memory pooling and sharing with cache-coherency support. It
multiplexes on Peripheral Component Interconnect Express (PCIe),
providing a mechanism to extend passive and active computing de-
vices over serial links. Compared to previous attempts to implement
HPC EM over shared memory, one salient feature of CXL is the
end-to-end implementation of the CXL standard into the processing
devices, without the need for software shims or drivers1 rep-
resenting a shared memory system architecture: hereby providing
actual Load/Store semantics. Another distinguishing characteris-
tic of previous (virtual) shared memory implementations is the

1Current solutions tend to favor software coherence instead of a hardware-based one
due to its complexity and overhead

disaggregated location of the memory pool. Combined, they of-
fer an interesting dichotomy to explore. We must find a suitable
design point that juxtaposes the performance requirements of ex-
isting cache-memory hierarchies within a host with the need for
parallel/distributed EM across hosts on disaggregated memory.

This paper is the first in the authors’ series to answer the hy-
pothesis by analyzing the constituents that entail the HPC EM. In
this one, we tackle the thorny question of “synchronization,” as
its different components and requirements are prominent aspects
that will enable the effective collaboration between the current
memory hierarchies and the CXL-based HPC EM. In particular,
we explore the feasibility of fine-grain synchronization without
hardware support. The contributions of the paper are:

(1) an implementation of a Peterson/Tournament Lock for CXL
using software coherence and no atomic operations;

(2) a study of the performance of such lock on a CXL hardware
prototype running in one and two nodes configurations;
and

(3) a discussion comparing and contrasting our strategy with
modern synchronization primitives leveraging hardware
support with an eye toward feasibility.

2 BACKGROUND
The following provides the salient features of the disaggregated
memory system we consider in the remainder of our work. In par-
ticular, we motivate our choice of pooled CXL-based disaggregated
memory using a PGAS memory model to evaluate software-based
synchronization and how other synchronization efforts might be
ported to the current CXL testbed.

2.1 Architecture
Disaggregated memory can broadly be categorized into two vari-
ants: split and pooled. The split architecture maintains the tight
coupling between compute and memory but allows nodes to re-
quest additional memory from others in a peer-to-peer fashion. The
memory division within can be flexible, and an additional daemon
is required to service memory requests. Conversely, the pooled ap-
proach employs FAM to be shared by multiple nodes. Memory can
be attached directly to a node or through a network of dedicated
switches. The pooled approach provides a clear distinction between
compute nodes and memory, permitting a more flexible approach
to upgrading an existing system based on changing needs. The
CXL standard makes the pooled approach attractive, with vendor
support promising coherent memory and CXL-based switches for
advanced memory networks.

Figure 1 illustrates a pooled architecture using CXL and demon-
strates the two levels of fine-grain data sharing that CXL aims to
achieve. It is important to note that the challenge of implementing
fine-grain synchronization extends beyond scaling out. The first
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Figure 1: A Pooled CXL Environment Overview

level of sharing involves coherent memory access within a node,
which allows CPUs, various compute accelerators (e.g., GPUs), and
FAM to share data. The second level enables coherent data sharing
across nodes through a dedicated memory network.

2.2 Address Space
The authors of [4] provides a thorough overview of the various
efforts before CXL, highlighting three different address space types
appropriate for data sharing: key-value store, unified address space,
and PGAS. The key-value store model is restrictive and forgoes
a traditional memory layout (e.g., Clover [5]). In return, strong
consistency guarantees can be made at the additional programming
development cost. The unified address space makes all memory,
including the nodes, accelerator devices, and FAM, visible to every
node in the system (e.g., vNUMA [6]), Argo [7], and vDSM [8]).
The address space can be flat or hierarchical; however, address
translation is challenging regardless, even with hardware support.
PGAS is the most attractive approach, as it more easily extends to
the heterogeneous node architecture (i.e., accelerators and FAM).
Examples for this address space include DVM [9], and soNUMA
[10]. In the PGAS model, each process has its own local and global
address space. In the case of CXL-based disaggregated memory,
FAM makes up the global shared address space.

Using a PGAS model’s global address space requires additional
considerations from a program execution model (PEX) point of
view. PGAS models have been well studied within disaggregated
memory and out [11, 12]; however, CXL-based systems present new
opportunities to revisit their design thanks to low(er) latency mem-
ory access, explicit coherence guarantees, and potential hardware
support.

Figure 2 presents our view of the hierarchical CXL-based ad-
dress space. The local address space consists of memory from a
single node (and its compute accelerators) and any remote mem-
ory requested on-demand during execution. This vertical address
space includes a node’s DRAM and cache. The shared (horizontal)
address space consists of dedicated FAM. We envision a segment of
this memory similar to a C/C++ data segment. The user/compiler
can identify the required shared memory at compile time, and the
runtime can initialize it before execution (similar to work presented
in [13]). Nodes can directly access data in the shared data segment
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Figure 2: Hierarchical address space of a PGAS disaggregated
memory system. Each node’s process includes a vertical and
horizontal view of memory.

or use data structures such as queues, deques, and maps to share
memory from their “local” block of FAM.

Synchronization within a programming model typically spans
its memory consistency model and explicit atomic/synchronization
operations. The granularity of execution depends on the overhead
of synchronization, and an efficient parallel execution must amor-
tize this overhead to observe the benefit of parallelism. From a
software perspective, synchronization primitives are ideally imple-
mented in hardware and found in all modern processors and some
high-performance network devices. Synchronization is expensive to
implement in hardware once the synchronization domain exceeds
a threshold of active state maintained by a group of participants
as a function of intra-group distance. This fact places the trade-off
of software versus hardware-based coherency (and supporting in-
memory atomic operations) on the critical path to achieving CXL’s
goal of fine-grained data sharing.

3 METHODOLOGY
In order to understand the impact of software-based synchroniza-
tion that could ease hardware implementation requirements, we
explore locks in FAM. From a software perspective, locks are a sim-
ple way to provide concurrent access to shared data. They are the
building blocks for more advanced primitives such as semaphores,
futures, and concurrent data structures. While modern locks are
typically implemented using hardware-based intrinsics such as test-
and-set, compare-and-swap, and fetch-and-add (see Section 19),
we implement a tournament lock based on the classic Peterson
algorithm [14] as it can be implemented with minimal software-
coherence support.

The pseudo-code for implementing a Peterson lock is presented
in Algorithm 1. The algorithm supports two threads and only re-
quires atomic reads and writes. We manually insert producer and
consumer cache flushes to ensure the latest data is available. More-
over, we pad each variable to the cache line boundary to eliminate
any misses due to false sharing (as done in other classical lock
implementations discussed in Section 19).

The tournament lock is built using a binary tree of Peterson locks.
This setup gives a complexity 𝑂 (𝑙𝑜𝑔(𝑁 )) where 𝑁 is the number
of threads used to perform a locking operation. To allocate, the
number of participating threads must be known and be uniquely
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Algorithm 1: Peterson Lock Pseudocode for two threads
Input :The 𝑖𝑑 of the running process

1 begin
2 Record L:
3 𝑓 𝑙𝑎𝑔[2] ← [0, 0];
4 𝑡𝑢𝑟𝑛 ← 0;

5 Function acquireLock(L, id):
6 𝑏𝑎𝑐𝑘𝑜 𝑓 𝑓 ← 1;
7 𝑜𝑡ℎ𝑒𝑟 ← (1 − 𝑖𝑑);
8 𝐿.𝑓 𝑙𝑎𝑔[𝑖𝑑] ← 1;
9 producerFlush();

10 𝑡𝑢𝑟𝑛 ← 𝑜𝑡ℎ𝑒𝑟 ;
11 producerFlush();
12 consumerFlush();
13 while 𝐿.𝑓 𝑙𝑎𝑔[𝑜𝑡ℎ𝑒𝑟 ] ≠ 0 & 𝑡𝑢𝑟𝑛 == 𝑜𝑡ℎ𝑒𝑟 do
14 sleep(backoff );
15 𝑏𝑎𝑐𝑘𝑜 𝑓 𝑓 ← 𝑏𝑎𝑐𝑘𝑜 𝑓 𝑓 ∗ 2;
16 consumerFlush();

17 Function releaseLock(L, id):
18 𝐿.𝑓 𝑙𝑎𝑔[𝑖𝑑] ← 0;
19 producerFlush();

identified. The tournament lock will allocate 𝑁 − 1 Peterson Locks.
The locks are allocated in the shared data segment and initialized
before execution.

4 EXPERIMENTAL SETUP
We used a hardware testbed composed of two nodes with an in-
hardware CXL 1.x to CXL 2.x Protocol Conversion interface with
a memory-accelerated component. Figure 3 showcases the cluster
configuration. A daemon running on the second node is used to
allocate memory on FAM. Each node comprises of two sockets
composed of 28 Intel Xeon Gold 5420 physical cores (each with two
logical threads) running at 4.1 GHz. Each physical core has a private
L1 (2.6 MiB), a private L2 (112 MiB), and a shared L3 per socket
of 105 MiB. The local memory for each node is 1 TB. Each node
connects to the FAM device via PCIe5 and to each other through
Ethernet. The memory accelerator has 32 GiB of extra memory to
share between the two nodes. Finally, due to a hardware limitation
of our testbed, the threads are pinned to a single NUMA domain
(i.e., socket). The threads in node 1 are pinned to the first socket,
and the threads in node 2 are pinned to the second socket. This
setup showcases how intranodal locality affects the contention and
runtime in this setup.

Regarding the software toolchain, we use GCC v11.4, Open-
MPI v4.1.1, and Python 3.9.18. Our implementations use C++14’s
standard multi-threading. Because of the daemon behavior, we pre-
allocate the shared memory segment in a separate process and keep
the region alive (i.e., persistent) for the rest of the test application to
access. This setup emulates the more advanced software toolchain
described in Section 2.2.
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Figure 3: Block Diagram of our CXL Hardware Prototype

To test the software coherency of our CXL setup, we imple-
mented a tournament of Peterson locks as described in Section 3.
Our driver application allocates the lock’s storage and the protected
memory region in the FAM memory. Our critical region contains
minimal operations (a single read-modify-write cycle plus a few
flush operations) to ensure we are testing mutual exclusivity while
maximizing the possible contention.

We performed our evaluation using each node separately and
both nodes simultaneously. We used all the threads inside a single
socket of each node. Each experiment performed the same num-
ber of lock and unlock operations while distributing them almost
equally across all the threads. We ran each experiment 50 times to
ensure statistical significance and record the time in nanoseconds.
In order to contextualize our results, we normalized the perfor-
mance to the cost of a read-modify-write operation to FAM.

5 RESULTS
In Figure 4, we plot the normalized average time of our locked
critical region with the spread of the 50 collected cases across the
number of threads used. Due to our testbed’s single socket per node
restriction, the single node 1 and node 2 cases end with 56 threads,
while the case using both extends to 112 threads. As we increase
the number of threads, the runtime increases thanks to contention
(since the same amount of work is being performed). As shown, the
rate of runtime increase is more pronounced in the low number
of threads range, while it gets slower as we approach the more
significant number of threads. This is because the tree structure
helps to ameliorate some of the increased contention since only
two threads can contend on an internal lock at a time. As we get to
the highest number of threads, the overhead reaches around 1000x
compared to a single thread’s performance. This behavior indicates
that the critical regions should be resized to be sufficiently large
enough to amortize this overhead.

Figure 5 shows what happens when moving across nodes and
their effect on the lock runtime. Figure 5 highlights the perfor-
mance in the one and two-thread cases. In this figure, we show our
baseline of the minimum time observed to perform a single read-
modify cycle that reads, writes, and flushes to the FAM memory.
This baseline is the normalization factor for all other experiments
to showcase the lock overhead behavior. We present the maximum
time observed for each single thread case as the overhead of the
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Figure 4: Scaling behavior for lock residing in the FAM device.
The average time reported is normalized to a read-modify-
write operation to FAM.

locking operation. Moreover, we present the maximum time ob-
served for a tournament lock of two threads as it defaults to a single
Peterson lock.

When running on node 1 with a single thread, we see an increase
of around 4x. On the other hand, while running on node 2 with the
same setup, we see a 3x increase. The difference can be attributed
to the intra-locality effects of running on a socket with a longer
latency to the PCIe. For two threads, node 1 and node 2 increase to
55.77x and 37.45x, respectively. The significant increase in time is
due to contention since the number of small locked critical sections
performed remains constant across experiments. The cost of the
contention is greater in node 1 due to the increased latency to FAM.
When a single thread per node competes for the same lock, we see
a performance of 39.61x. This indicates that while we pay a penalty
for node 1’s increased latency to FAM, we contend less thanks to
the offset access latencies.

On the other end of the spectrum, we explore the performance of
our locks when utilizing a full socket per node. Figure 6 shows this
distribution of normalized time per locked critical region as a violin
plot. The single-node, 32-thread experiments showcase the extra
latency needed by node 1 relative to node 2 with a larger mean and
longer tails. When using 32 threads on both nodes simultaneously,
we see a binomial distribution corresponding to the two different
latencies. The other set of results showcases the entire socket (56
threads per node) and shows a binomial distribution for all experi-
ments plus the same behavior as the previous set. When using both
nodes totaling 112 threads, we observe a larger range with more
outliers, highlighting the effects of contention.

6 DISCUSSION
6.1 Current Limitations of Software

Consistency
One of the major performance detriments in our experiments was
contention. Hence, we discuss how several lock methods designed
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Algorithm 2: Ticket Lock with proportional backoff
1 begin
2 Record L:
3 𝑛𝑒𝑥𝑡𝑇𝑖𝑐𝑘𝑒𝑡 ← 0;
4 𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔← 0;

5 Function acquireLock(L):
6 𝑚𝑦𝑇𝑖𝑐𝑘𝑒𝑡 ← fetchAndIncrement (&𝐿.𝑛𝑒𝑥𝑡𝑇𝑖𝑐𝑘𝑒𝑡 );
7 while True do
8 sleep(𝑚𝑦𝑇𝑖𝑐𝑘𝑒𝑡 − 𝐿.𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔);
9 if 𝐿.𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔 ==𝑚𝑦𝑇𝑖𝑐𝑘𝑒𝑡 then
10 𝑟𝑒𝑡𝑢𝑟𝑛;

11 Function releaseLock(L):
12 𝐿.𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔← 𝐿.𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔 + 1;
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Table 1: Lock characteristics, when dealing with contention, high means that a lock implementation is susceptible to it, and
low means that they have features to deal with it; while when reading the vertical locality column, low means that node’s
memory locality was not considered in its design and high means that the lock was designed to exploit it. Memory footprint is
calculated in variables used.

Lock Name Mem Footprint Num Atomics Contention Vertical Locality

Ticket 2 1 High Low
Anderson numProcs + 1 2 Medium High

MCS (Up to numProcs) * 2 2 Low High
Peterson 3 0 Low Low

Tournament of Peterson (numProcs - 1)*3 0 Low Low

Algorithm 3: Anderson’s Queue Lock
1 begin
2 Record L:
3 𝑠𝑙𝑜𝑡𝑠 [0 .. numprocs - 1] ← [1, 0, 0...];
4 𝑛𝑒𝑥𝑡𝑆𝑙𝑜𝑡 ← 0

5 Function acquireLock(L, myPlace):
6 𝑚𝑦𝑃𝑙𝑎𝑐𝑒 ← fetchAndIncrement (&𝐿.𝑛𝑒𝑥𝑡𝑆𝑙𝑜𝑡 );
7 if (𝑚𝑦𝑃𝑙𝑎𝑐𝑒 % 𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠) then
8 atomicAdd (&𝐿.𝑛𝑒𝑥𝑡𝑆𝑙𝑜𝑡 , -numProcs);
9 𝑚𝑦𝑃𝑙𝑎𝑐𝑒 ←𝑚𝑦𝑃𝑙𝑎𝑐𝑒 % 𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠;

10 while 𝐿.𝑠𝑙𝑜𝑡𝑠 [𝑚𝑦𝑃𝑙𝑎𝑐𝑒] == 0 do
11 ;
12 𝐿.𝑠𝑙𝑜𝑡𝑠 [𝑚𝑦𝑃𝑙𝑎𝑐𝑒] ← 0;
13 Function releaseLock(L, myPlace):
14 𝐿.𝑠𝑙𝑜𝑡𝑠 [(𝑚𝑦𝑃𝑙𝑎𝑐𝑒 + 1) % 𝑛𝑢𝑚𝑃𝑟𝑜𝑐𝑠] ← 1;

to alleviate contention in multithreaded shared memory environ-
ments may be ported to our testbed. The research presented in [15]
explained the advantages and disadvantages of various types of
spin locks. The design iterations between these types usually in-
volve a trade-off between memory and contention avoidance, plus
exploiting the vertical memory hierarchies of current processors.
As part of our discussion, we selected three locks, highlighting their
behavior and applicability to FAM. A summary table for all these
locks, plus our Peterson implementations, is provided in Table 1.

In this setup, the lock has a constant memory footprint of two
(lines 3 and 4). A proportional backoff is used to help to reduce
the number of requests. The assumption is that since we know the
participant’s place in line, we can sleep for a time proportional to
the difference between the current place and the serving number
(Line 8). However, this implementation requires an atomic operation
(Line 6), and the 𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔 variable must be coherent to function
correctly. Moreover, just using the two variables is insufficient
to combat contention, and the resulting coherency actions from
spinning might create even more traffic, especially since all threads
will spin on 𝑛𝑜𝑤𝑆𝑒𝑟𝑣𝑖𝑛𝑔 (hence, there will be more contention).

The next evolution is Anderson’s queue lock (Algorithm 3). In
this setup, the lock’s required memory is expanded to an array

Algorithm 4:MCS Lock
1 begin
2 Record I, L:
3 𝑛𝑒𝑥𝑡 ← 𝑛𝑖𝑙 ;
4 𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

5 Function acquireLock(L, I):
6 𝐼 .𝑛𝑒𝑥𝑡 ← 𝑛𝑖𝑙 ;
7 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ← fetchAndStore(L, I);
8 if 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ≠ 𝑛𝑖𝑙 then
9 𝐼 .𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑡𝑟𝑢𝑒;

10 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 .𝑛𝑒𝑥𝑡 ← 𝐼 ;
11 while 𝐼 .𝑙𝑜𝑐𝑘𝑒𝑑 == 𝑡𝑟𝑢𝑒 do
12 ;

13 Function releaseLock(L, I):
14 if 𝐼 .𝑛𝑒𝑥𝑡 == 𝑛𝑖𝑙 then
15 if compareAndSwap(L, I, nil) then
16 𝑟𝑒𝑡𝑢𝑟𝑛 ;
17 while 𝐼 .𝑛𝑒𝑥𝑡 == 𝑛𝑖𝑙 do
18 ;

19 𝐼 .𝑛𝑒𝑥𝑡 .𝑙𝑜𝑐𝑘𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒

of slots as large as the number of participants (Line 3). This ar-
ray ensures that each participant will have its variable to check
instead of a centralized flag. The array elements are usually tailored
(aligned and padded) to fully accommodate the underlying memory
hierarchy and prevent spurious coherency actions. As such, this
lock trades off memory space for contention avoidance. Finally, it
increases the number of atomics to two (Lines 6 and 8).

The final lock selected is the MCS lock (Algorithm 4). This lock
provides the best trade-off between contention reduction, atomic
operation usage, and memory footprint. It is based on the idea that
each participant will register to a list with only two variables per
entity (Lines 3 and 4). Each queued entity will spin on its local
copy until its successor signals it (Lines 12 and 19). In the worst-
case scenario, the MCS’s memory footprint can grow as large as
Anderson’s; however, it should be safe to assume these cases are
rare. By having the spin variables local to the threads, the lock can
take advantage of entirely spinning in its memory hierarchy (i.e.,

5



Joshua D. Suetterlein, Joseph B. Manzano, Andres Marquez

cache) until it is signaled by the successor (through this memory
location). Finally, as Anderson, two atomic operations are required
to be fully implemented.

All three locks have showcased good performance behavior in
multithreaded shared memory systems [15]. However, applying
them to our FAM environment will produce subpar results because
they rely on (vertical) hardware coherence. In particular, variables
used in spinning are cached.

The Anderson lock exhibits a better contention profile than the
ticket lock at the expense of memory. Each flag is only contended
on by two threads (similar to our Peterson lock). Implemented in
FAM, the Anderson lock would require additional flushes, making
its behavior similar to our tournament lock without the 𝑂 (𝑙𝑜𝑔(𝑛))
complexity.

In the case of the MCS lock, the successor flags require global vis-
ibility. In a FAM-based implementation, the locking entities might
reside in disjoint memory address spaces. Compared to single node-
based implementationswhere the flags can be dynamically allocated
quickly and globally (using malloc or alloca), the FAM-based imple-
mentation would require allocating globally visible device memory,
which is expensive in our current testbed. Further, each spin needs
to be globally flushed, completely negating the locality advantages
of this lock. Lastly, by preallocating memory, our lock degenerates
into an Anderson lock using a linked list instead of an array.

Based on our analysis, we conclude the importance of hardware
coherence for modern locks. In particular, atomic operations are
useful in reducing the memory footprint as shown by the ticket
and MCS locks. In addition, Anderson’s and MCS locks show how
contention management can be transformed into cache coherency
operations. Together, these results highlight the importance of the
hardware support required to achieve fine-grain data sharing.

6.2 Programming Model Implications
Based on our findings, creative solutions are required to achieve
CXL’s goal of fine-grained data sharing. Given an overhead 3000
times our read-modify-write baseline, an overly conservative esti-
mate would require a critical section on the order of 10000 times
a read-modify-write operation to achieve an order of magnitude
amortization. More detailed studies should show how much con-
tention will decrease with the size of the critical section to provide
a more concrete estimate. The impact of the overhead of this size
pushes back on the EM as they seek to overlap the costs of tasking
and data movement with useful work.

While CXL as a standard does not advocate for a single EM, its
goal of achieving fine-grained data sharing supported by vendors
gives hope for a model with programmability and performance
akin to shared memory models like OpenMP [16] 2. The benefit of
a model like OpenMP is its balance of programmability and perfor-
mance, particularly demonstrated by its parallel loops. However,
since OpenMPworks in a single shared address space, it has a mono-
lithic view of memory where NUMA effects are not considered. On
the other hand, dataflow-inspired, fine-grained models capable of
better utilizing compute resources across NUMA domains like HPX

2We omit BSP-style message passing from our discussion since it is inherently coarse-
grained by construction and due to the large overhead of moving data across the
network.

[17], Legion [18], and ARTS [19] sacrifice some degree of simplicity
and programmability by scaling across nodes and devices. Much
of the added complexity and overhead comes from the discrete
process spaces utilizing distributed nodes. In both cases, fine-grain
synchronization is required to reduce the overhead from their run-
time implementations. This overhead, combined with the cost of
data movement, drives the task granularity.

CXL has vast potential to impact the EM’s design space. By
providing low latency coherent access to shared memory across
nodes and devices, it presents a large (albeit notmonolithic)memory
useful for user and runtime data. From the user’s perspective, FAM
readily provides a means for data sharing with high read-to-write
ratios or page-level interleaved access. With better support (i.e.,
atomic operations and hardware-base coherency), the granularity
of access can be reduced. For runtimes, placing work queues into
low(er) latency shared data would allow distributed work sharing
across nodes without paying high network messaging costs. Such
a load-balancing scheme would allow lower overhead, leading to
finer-grain execution across nodes and devices.

In our work, we highlight locks as a critical step to enabling
fine-grain synchronization and concurrent data structures, which
are used in the runtime implementations of the mentioned EMs.
Suppose hardware synchronization can not be supported or only
in part (e.g., a minimal set of atomic operations). In that case, inno-
vative solutions are required to implement these central runtime
components to realize CXL’s potential for fine-grained EMs.

7 RELATEDWORK
The meta-study presented in [4] showcases an in-depth analysis
of the impact of disaggregated memory across all software and
hardware aspects in the context of data centers and their unique
workflows. The fifty studies analyzed found that data sharing and
its associated coherency and consistency implications are ignored
or briefly touched as not applicable to their workflows. This point
is critical since they recommend that if a third party wishes to use a
disaggregated memory system in a multithreaded context, it should
be analyzed and studied in terms of overheads of sharing, coher-
ence, and movement compared with large deployment solutions
(virtualization, message passing, etc.). We are starting this trend in
this paper by analyzing the costs of a synchronization staple in a
CXL-based system.

In the work presented in [20], the authors focus on HPC work-
flows and their applicability to disaggregated memory systems that
enhance bandwidth and capacity when used as multi-tier memory
systems. They also dispel common misconceptions, such as mem-
ory bandwidth decreases when using disaggregated memory systems
and applications always perform worse with disaggregated memories.
However, they point out that the interferences (i.e., contention)
at several levels of FAM hierarchy might be one of the significant
performance challenges with HPC workflows in this setup. They
also highlight the need to exploit the vertical memory hierarchy
composed of caches and prefetchers to successfully take advantage
of this memory. Both of these points are well represented in our ex-
periments, which showcases that software coherence is insufficient
to exploit the vertical memory hierarchy in our setup fully, and
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the contention is just exacerbated by not being able to use vertical
exploiting algorithms.

Work presented in [21] shows a more disparaging view of data
sharing in data center workflows. The reasoning is that although
data sharing leads to a decrease in total bytes moved, the increase
in complexity and overhead required for coherency and consistency
are too high to effectively implement them at scale. Although this
observation is valid, they acknowledge that some workflows might
require these capabilities. Their suggestion is to either minimize its
use or avoid it. In many of our HPC workflows, this would require
an extensive software restructuring or a heavy emphasis on system
software and hardware co-design efforts.

In the current discussion, the selection of a programming model
affects how synchronization and consistency/coherency are pre-
sented to the user and how the system software approaches it.
In [22], the authors explore exploiting a disaggregated memory
setup with its extreme heterogeneity and plug-and-play architec-
ture. Their conclusion used a flavor of dataflow computation to
represent workflows across domains. Although coherency and con-
sistency are not mentioned explicitly, dataflow designs are well
known to exchange the need for them with memory duplication.
Moreover, a subset of HPC workflow memory footprints can snow-
ball with concurrency and resolution. This behavior might not be
suitable for these types of programming models.

Finally, [23] provides an exciting view of providing data sharing
using the OpenSHEM programming model [11] and a hardware
prototype using multi-headed CXL controllers. They provide in-
device atomics for fine and coarse synchronization. One of the main
aspects of the discussion is how to deal with the granularity problem
since being too fine or coarse-grained can decrease performance.
Their observation is that their hardware system should work well
in cases with high read and low write demands.

8 CONCLUSIONS
We have presented an exploration synchronization in a CXL-based
disaggregated memory system by implementing locks without hard-
ware atomics or hardware synchronization. We highlight the perfor-
mance degradation of small critical sections thanks to contention
and highlight how state-of-the art locks leverage the vertical mem-
ory hierarchy to achieve a better memory footprint and contention
profile. Further, we discuss the opportunities of fine-grain CXL-
based synchronization for advanced runtimes. Lastly, we highlight
the need for innovation to support low latency synchronization to
implement fine-grain, scale-out runtime systems.
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