
Memory Efficiency Oriented Fine-Grain Representation and
Optimization of FFT

Salvatore Servodio

University of Delaware

Newark, DE, United States

servogod@udel.edu

Xiaoming Li

University of Delaware

Newark, DE, United States

xli@udel.edu

ABSTRACT
Fast Fourier Transform (FFT) is the computation kernel of many

scientific and machine learning applications. Its state-of-the-art im-

plementation in current practices normally involves searching for

the best performing variant in a pre-defined implementation space.

The expressiveness of the space and the capability to manipulate

the variant expressions largely determine the final performance. It

is known that large size FFT problems are memory bound. How-

ever, existing FFT libraries such as FFTW adopt the search space

representations that are oriented for tuning operational efficiency.

Such representations make it almost impossible to specifically tune

FFT for memory performance. In this paper, we introduce REFFT, a

software library capable of computing Discrete Fourier Transforms

(DFT) by applying a novel approach to exploring the decomposition

space of memory accesses in FFT. This is achieved by creating a new

model for representing a Fast Fourier Transform (FFT) by means

of a binary tree structure to represent its decomposition and by

organizing the subspace of valid solutions into two ordered and

directed sets: tree rotations and codelet permutations. Furthermore,

in this newmodel, the nodes of a given FFT binary tree provide com-

putationally meaningful attributes which are derived from its edges.

This paper demonstrates that it is possible to easily navigate with

fine granularity what would initially seem to be an exceptionally

vast space of solutions in a practical manner and find best per-

forming plans by tuning specifically for memory efficiency through

mathematical structure manipulations. We compare REFFT with

FFTW, one of the most broadly used FFT libraries, for problem sizes

ranging from 2
15

to 2
25

on three recent Intel and AMD processors.

REFFT achieves the average speedup of 14.3% across all sizes with

max speedup 43.1%

1 INTRODUCTION
Fast Fourier Transform (FFT) is one of the most broadly used com-

putation kernels in science and engineering. FFT calculates the

spectrum representation of time-domain input signals ®𝑥 with the

formula:

𝐹 [𝑘] =
𝑁−1∑︁
𝑗=0

𝑥 [ 𝑗]
(
𝑒−2𝜋𝑖𝑘/𝑁

) 𝑗
, 0 ≤ 𝑘 < 𝑁

If the input size is 𝑁 , the FFT operates in 𝑂 (𝑁𝑙𝑜𝑔𝑁 ) steps. The
performance of FFT algorithms is known to be determined only by

input size, and not affected by the value of input.

By using different decomposition schemes such as Cooley-Tukey [3]

or Winograd [16], FFT can be implemented in many different ways.

The performance of an implementation is theoretically determined

by both the operational efficiency and the memory access efficiency.

However, FFT’s memory accesses are intrinsically strided and it

conducts data shuffling on input, intermediate results and twiddle

factors, all being the type of memory access patterns that current

computer memory systems are hard to optimize for. Therefore, it is

widely realized that FFT, especially for large size FFT problems, is

fundamentally a memory bound problem.

Because the number of possible ways to implement FFT is huge

even for relatively small problem sizes, the state-of-the-art FFT

libraries such as FFTW [7] almost all use empirically search to

tune FFT for a particular computer architecture and for a particular

problem size. Generally speaking, the libraries will try different

combination of decomposition methods, empirically measure their

performance and use the best performing decomposition scheme

as the final implementation. Essentially, they define a internal rep-

resentation of the search space. Therefore, the expressiveness of

the space and the capability to manipulate the variant expressions

largely determine the final performance.

This work is driven by a crucial observation: existing search

space representations in libraries like FFTW often hinder tuning for

FFT’s memory performance. This issue stems from two main fac-

tors. Firstly, current representations prioritize operational efficiency

tuning. FFTW, for instance, defines specific FFT implementations

as plans that apply decomposing methods top-down, with each

method clearly defining operations but overlooking memory ac-

cesses. Consequently, tuning for memory performance becomes

nearly impossible. Secondly, these high-level decomposition de-

cisions can significantly impact memory access patterns. A small

change in the operational decomposition can lead to vastly different

memory access behaviors. Thus, in the current setup, fine-tuning

memory performance is unattainable.

Our key idea and the key contribution of this work is a new

representation of FFT’s decomposition space of memory accesses.

The representation not only straightforwardly denotes the mem-

ory access patterns, but also support fine-grain tuning of memory

accesses in FFT. This new representation, when combined with

empirical searching, enables direct tuning of memory efficiency in

FFT implementations, a capability lacking in existing libraries like

FFTW. Specifically, we introduce the Rotational Enumerated FFT

Library (REFFT), capable of computing Discrete Fourier Transforms

(DFT) by exploring the decomposition space of memory accesses

in FFT. This is achieved through a new model representing FFT

via a binary tree structure, organizing the subspace of valid solu-

tions into two ordered and directed sets: tree rotations and codelet

permutations. In this model, the nodes of an FFT binary tree of-

fer computationally meaningful attributes derived from its edges.

Our paper demonstrates the feasibility of navigating what initially

appears to be an exceptionally vast solution space with fine granu-

larity and practically tuning memory efficiency by manipulating



Salvatore Servodio and Xiaoming Li

mathematical structures. Regarding empirical searching, akin to

FFTW, REFFT employs a planner to explore the space of all possible

solutions and seeks the best candidate based on a combination of

fixed and experimental criteria for a given machine. Crucially, the

REFFT planner navigates the abstracted subspace by manipulating

the mathematical structures of plans, guided by performance on

today’s computer memory systems.

2 BACKGROUND
FFT algorithms recursively decompose a 𝑁 -point DFT into several

smaller DFTs [5], and the divide-and-conquer approach reduces

the operational complexity of a Discrete Fourier Transform (DFT)

from 𝑂 (𝑁 2) into 𝑂 (𝑁𝑙𝑜𝑔𝑁 ). There are many FFT algorithms, or

in other words, different ways to decompose DFT problems. Our

REFFT library is based on the general Cooley-Tukey factorization

FFT algorithm [4]. In this section we briefly introduce the FFT algo-

rithms and overview how they are incorporated into our approach.

The DFT transform of an input series 𝑥 (𝑛), 𝑛 = 0, 1, ..., 𝑁 − 1 of size

𝑁 is presented as 𝑌 (𝑘) =
∑𝑁−1
𝑛=0 𝑥 (𝑛)𝑊 𝑛𝑘

𝑁
. We can map the one

dimensional input into two dimensions indexed by 𝑙 in L dimen-

sion and𝑚 in M dimension, respectively. The Cooley-Tukey FFT

decomposes the original DFT into three sub-steps: (1) Perform M

DFTs of size L, 𝐴(𝑝,𝑚) = ∑𝐿−1
𝑙=0

𝑥 (𝑙,𝑚)𝑊 𝑙𝑝

𝐿
; (2) Multiply twiddle

factors, 𝐵(𝑝,𝑚) = 𝐴(𝑝,𝑚)𝑊 𝑝𝑚

𝑁
; and (3) Perform L DFTs of size M,

𝑌 (𝑝, 𝑞) = ∑𝑀−1
𝑚=0 𝐵(𝑝,𝑚)𝑊𝑚𝑞

𝑀
. Therefore, 𝑌 (𝑘) = 𝑌 (𝑝𝑀 + 𝑞).

In essence, Cooley-Tukey introduces a decomposition approach

that divides one dimensional computation into two. Moreover, the

Radix algorithm [5] is a special case of the Cooley-Tukey algorithm

for power-of-two FFT problems. Furthermore, the Rader algorithm

[13] and the Bluestein algorithm [1] can be used to calculate prime-

sized Fourier transform problems.

In this paper, REFFT’s internal representation extends the tensor

representation introduced in FFTW [7] to represent the transfor-

mations of FFT. An I/O tensor 𝑑 (𝐶, 𝑆𝑖, 𝑆𝑜, 𝐼 ,𝑂) denotes FFTs along
a data dimension where 𝐶 is the size of one dimensional FFT, 𝑆𝑖

and 𝑆𝑜 represent the stride of input and output, and 𝐼 and 𝑂 are

the addresses of input and output array. 𝑡𝐿
𝑀

represents multipli-

cation of twiddle factors with size 𝐿 × 𝑀 . The I/O tensor rep-

resentation captures the two most important factors that deter-

mine FFT’s performance, i.e., data access patterns and computa-

tion load. As an example, the Cooley-Tukey FFT decomposition

can be precisely denoted as an extended I/O tensor representation

𝑢 = {𝑑 (𝐿,𝑀,𝑀, 𝐼,𝑂), 𝑡𝐿
𝑀
𝑑 (𝑀, 1, 1,𝑂,𝑂)}.

FFTW is one of the most broadly used FFT libraries and it pro-

vides a solution for general FFT problems. Beside it, there are other

FFT libraries for different problem domains such as Nukada’s work

on 3D FFT [12, 11], and Govindaraju’s [8] and Gu’s work on 2D and

3D FFT [9]. Recently, Gu et.al. [10] demonstrated a FFT library that

can solve FFT problems larger than the device memory. For even

larger FFT problems, Chen et.al. presented a GPU cluster based

FFT implementation [2]. However, since computation contributes

only a trivial part to the overall execution time, the work has been

almost exclusively focused on the optimization of communication

over inter-node channels.

3 FOUNDATIONAL CONCEPTS
The theoretical foundation of REFFT is the representation of FFT

as a binary tree with n internal nodes and n+1 leaf nodes. The mo-

tivation for this representaion is three-fold: (1) the representation

must either explicitly encode or support straightforward deduction

of primitive operations in FFT that are most consequential to FFT’s

memory efficiency. These primitive operations include decimation

either in the time domain or in the frequency domain, the shuf-

fling of data (on input or intermediate results), and twiddle factor

multiplication. (2) The representation must be able to be indexed

so that we can define the performance neighbors of a plan. This

addressibility is necessary so that we can fine-tune a plan for its

memory performance. Surprisingly existing libraries such as FFTW

don’t provide this capability, so that tuning in those has to be done

as repetitive trials of different high-level decomposition schemes.

In some cases, software libraries implement a custom stride feature

that would allow users to fine tune memory efficiency to some

degree[14]. In such instances, the memory performance can be

measured or even used as an optimization goal. However, there is

no way to refine a plan to solve a particular memory performance

issue. (3) The capability to enumerate plans in the search space. Our

representation is based on a binary tree structure derived from the

radix decomposition. However, due to the intrinsic property of FFT,

not all binary trees represent valid FFT execution plans. Therefore,

our representation must support enumeration of all valid trees.

In this section, we will introduce three foundational concepts

upon which the REFFT architecture functions: binary tree ranking,

leaf node permutations, and the data shuffling algorithm. Then, we

will introduce the operation- and memory-oriented interpretations

of the nodes and edges. For instance, internal nodes will represent

twiddle nodes, while the leaf nodes will map to a direct solution

called codelets, similar to their counterparts in FFTW.

3.1 Notations
A binary tree representation of FFT has two main defining compo-

nents: the arrangement of the edges that connect the internal nodes

and the permutation of the leaf nodes. We will denote 𝑻 as a binary

tree and 𝑩𝒏 as the set of all binary trees with 𝒏 internal nodes. It

is possible to derive different variants of binary trees simply by

altering the arrangement of the internal nodes and the edges that

connect them. One way to accomplish this is through a series of

binary tree rotations, in which the internal nodes are swapped to

obtain different topographical structures while preserving the order

of the leaf nodes. By ’leaf node order,’ we define it as if one were to

’read the leaf nodes from left to right.

3.2 Binary tree ranking and unranking
In order to efficiently apply tree rotations and generate all possi-

ble tree variants, we implement a ranking mechanism based on

lexicographic order proposed by Zaks et al. [17]. We first define a

lexicographic representation of binary tree using a sequence of 1’s

and 0’s, where a 1 represents an internal node and a 0 represents a

leaf node. The order of the 1’s and 0’s is obtained by traversing a

binary tree 𝑻 in preorder. This will generate a string denoted 𝒙 with

n 1’s and n+1 0’s. However, given that not all binary sequences of

length 2𝒏 + 1 will necessarily generate a binary tree, the labeling



Memory Efficiency Oriented Fine-Grain Representation and Optimization of FFT

algorithm has a validation rule which is based on the “dominating

property”. As stated in Zaks’ paper, if we consider a 0,1-sequence 𝒙
and omit the final element which is always a 0 (given the nature

of binary trees), such that the length of the sequence is 2𝒏, then 𝒙
is said to have the dominating property if, in any given prefix, the

number of 1’s is at least as the number of 0’s. Furthermore, if in

the entire sequence the number of 1’s and the number or 0’s are

the same then that sequence maps to a unique binary tree with

𝒏 internal nodes and 𝒏 + 1 leaf nodes and is said to be “feasible”.

Feasible sequences will translate to valid and executable REFFT

plans.

One way to imagine valid binary sequences that can be success-

fully mapped to a FFT solution is by considering the box-office

problem: 2𝒏 people are in line at the box office and 𝒏 have 1 dollar

bills, while the others have 2 dollar bills. Tickets cost 1 dollar each.

When the box-office opens, it has no money in their drawer to

disburse change. Given that each ticket costs 1 dollar, in how many

ways can all the customers stand in line such that none will have to

wait for change? All the possible solutions represent a feasible 1,0

binary sequence that REFFT can map to an FFT solution. The binary

sequence can also be labeled by the integer sequence 𝒛 where 𝒛𝒊 is
the ith position of the 1’s in the binary sequence 𝒙 . Figure1 shows
the sequence 𝒙 = 11110100000 which represents a valid binary

tree and has 𝒛 = (1, 2, 3, 4, 6).

Figure 1: A binary tree and its 𝒙 and 𝒛 sequences.

The set of binary tree 𝑩𝒏 , the 0,1-sequence 𝒙 and the integer

sequences 𝒛 are in a 1-1 correspondence with one another. This

enables us to index each tree and thus enumerate all binary trees,

simply by toggling different index values from the range of 1 up to

the Catalan value [15] 𝒃𝒏 of the number of internal nodes 𝒏 :

𝒃𝒏 =
1

𝒏 + 1

(

2𝒏
𝒏

)

𝑰 𝒏𝒅𝒆𝒙 (𝒛) 𝝐 𝑩𝒏 → [1, 𝒃𝒏]

The ranking function will map a binary tree to a specific index,

while the unranking function does the inverse, meaning from a

given index value and the number of internal nodes 𝒏, it will retrieve
the associated binary tree. REFFT utilizes the unranking function to

easily explore the FFT plan space. To obtain the 𝒛 sequence for the
index 𝑰 , we make use of an auxiliary doubly indexed data structure

𝒂𝒊,𝒋 such that 0 ≤ 𝒋 ≤ 𝒊 − 1:

𝒂𝒊,𝒊−1 = 1 for all i,

𝒂𝒊,0 = 𝒃𝒊 =
1

𝒊 + 1

(

2𝒊
𝒊

)

for all i,

𝒂𝒊,𝒋 = 𝒂𝒊,𝒋 + 𝒂𝒊−1,𝒋−1 otherwise

For example, if we consider a binary tree 𝑻 with 𝒏 = 7 internal

nodes, we would have the doubly indexed auxiliary sequence as

shown in table 1.

Table 1: The sequence 𝒂𝒊,𝒋 for 𝒏 = 7.

i 0 1 2 3 4 5 6

j

1 1

2 2 1

3 5 3 1

4 14 9 4 1

5 42 28 14 5 1

6 132 90 48 20 6 1

7 429 297 165 75 27 7 1

At this point, the lexicographic representation gives us the capa-

bility to numerically index or address binary trees. The next step is

to do the inverse mapping, that is, deducing FFT implementation

plans from their addresses. Unranking is the process of mapping an

“index” or “address” in the search space to a valid binary tree for FFT

implementation. We highlight here the algorithm for generating the

𝒛 sequence of a binary tree 𝑻 with 𝒏 internal nodes, whose index is

𝑰 𝒏𝒅𝒆𝒙 (𝒛) = 𝒕 . We indicate with 𝒂𝒏,𝒍 the value indicated by row 𝒏
and column 𝒍 in Table 1 and 𝑻𝒆𝒓𝒎𝒔 as the array that contains the

tuples (𝒏, 𝒍) that are utilized to generate the 𝒛 sequence.

To better understand how the algorithm works, let’s consider

the following example: we want to know the 𝒛 sequence of a binary
tree with 𝒏 = 5 internal nodes and with rank 𝒕 = 38:

Given 𝒕 = 38 and 𝒏 = 5, we generate the 𝒂𝒊,𝒋 sequence:
Step 1 (Line 2 ): 𝒛𝒊 = 42 - 38 + 1 = 5

Step 2 (Lines 3 - 8): While 𝒛𝒊 > 0

Iteration 1: 𝒛𝒊 = 5, 𝒏 = 5, 𝒍 = 4, so push (5, 4) in 𝑻𝒆𝒓𝒎𝒔, 𝒛𝒊 ←
5 − a5,4 = 5 − 1 = 4 , 𝒏← 𝒏 − 1
Iteration 2: 𝒛𝒊 = 4, 𝒏 = 4, 𝒍 = 3, so push (4, 3) in 𝑻𝒆𝒓𝒎𝒔, 𝒛𝒊 ←
4 − a4,3 = 4 − 1 = 3 , 𝒏← 𝒏 − 1,



Salvatore Servodio and Xiaoming Li

Algorithm 1 Unranking algorithm

1: initialize 𝑻𝒆𝒓𝒎𝒔 and 𝒓𝑻𝒆𝒓𝒎𝒔 as empty arrays

2: 𝒛𝒊 ← 𝒂𝒏,0 − 𝒕 + 1
3: while 𝒛𝒊 > 0 do
4: find 𝒍 s.t. 𝒂𝒏,𝒍 < 𝒛𝒊 or 𝒂𝒏,𝒍 == 1
5: push tuple (𝒏, 𝒍) into 𝑻𝒆𝒓𝒎𝒔
6: 𝒛𝒊 ← 𝒛𝒊 − 𝒂𝒏,𝒍
7: 𝒏← 𝒏 − 1
8: end while
9: 𝒍𝒔 ← 𝒍
10: 𝒓𝑻𝒆𝒓𝒎𝒔 ← tuples of 𝑻𝒆𝒓𝒎𝒔 in reverse order

11: initialize 𝒛[𝒊] ← 𝒊 + 1 for 𝒊 = 0 to 𝒍𝒔 ⊲ the 𝒍 value of the first
(𝒏, 𝒍) tuple of 𝒓𝑻𝒆𝒓𝒎𝒔

12: 𝒂𝒙 ← 1
13: while 𝒂𝒙 < 𝒍𝒆𝒏(𝒓𝑻𝒆𝒓𝒎𝒔) do
14: 𝒂 ← 𝒓𝑻𝒆𝒓𝒎𝒔[𝒂𝒙]
15: initialize 𝒚 as array of 0s of length 𝒂𝒏 ⊲ 𝒂𝒏 is the 𝒏 value

of the tuple 𝒂𝒊 = (𝒏𝒊, 𝒍𝒊)
16: for i = 0 to 𝒂𝒍 : 𝒚[𝒊] ← 𝒊 + 1 ⊲ 𝒂𝒍 is the 𝒍 value of the

tuple 𝒂𝒊 = (𝒏𝒊, 𝒍𝒊)
17: for i = (𝒂𝒍 − 1) to 𝒍𝒆𝒏(𝒛): 𝒚[𝒊 + 1] ← 𝒛[𝒊 + 1] + 2
18: 𝒛 ← 𝒚
19: 𝒂𝒙 ← 𝒂𝒙 + 1
20: end while
21: return 𝒛

Iteration 3: 𝒛𝒊 = 3, 𝒏 = 3, 𝒍 = 2, so push (3, 2) in 𝑻𝒆𝒓𝒎𝒔, 𝒛𝒊 ←
3 − a3,2 = 3 − 1 = 2 , 𝒏← 𝒏 − 1
Iteration 4: 𝒛𝒊 = 2, 𝒏 = 2, 𝒍 = 1, so push (2, 1) in 𝑻𝒆𝒓𝒎𝒔, 𝒛𝒊 ←
2 − a2,1 = 2 − 1 = 1 , 𝒏← 𝒏 − 1
Iteration 5: 𝒛𝒊 = 1, 𝒏 = 1, 𝒍 = 0, so push (1, 0) in 𝑻𝒆𝒓𝒎𝒔, 𝒛𝒊 ←
1 − a1,0 = 1 − 1 = 0 , 𝒏← 𝒏 − 1
End of While 𝒛𝒊 = 0
Step 3 (Line 9): Reversing the sequence we have the following

terms (𝒏, 𝒍): [(1, 0), (2, 1), (3, 2), (4, 3), (5, 4)]
⊲ Now we build the z sequence from 𝒓𝑻𝒆𝒓𝒎𝒔:

Step 4 (Line 11): for 𝒂𝒊,𝒋 = 𝒂1,0 , set z = [𝒊] = [1]

Step 5 (Line 12): 𝒂𝒙 ← 1
Step 6 (Lines 14 - 20): While 𝒂𝒙 < 𝒍𝒆𝒏(𝒓𝑻𝒆𝒓𝒎𝒔)
Iteration 1: 𝒚 ← [1, 𝒛[0] + 2] , 𝒛 ← 𝒚, 𝒂𝒙 ← 𝒂𝒙 + 1
Iteration 2: 𝒚 ← [1, 2, 𝒛[1] + 2] , 𝒛 ← 𝒚, 𝒂𝒙 ← 𝒂𝒙 + 1
Iteration 3: 𝒚 ← [1, 2, 3, 𝒛[2] + 2] , 𝒛 ← 𝒚, 𝒂𝒙 ← 𝒂𝒙 + 1
Iteration 4: 𝒚 ← [1, 2, 3, 4, 𝒛[3] + 2] , 𝒛 ← 𝒚, 𝒂𝒙 ← 𝒂𝒙 + 1
Step 6 (Line 20): The final 𝒛 sequence is 𝒛 = [1, 2, 3, 4, 9]

Utilizing the unranking algorithm, REFFT can do fine-tuning

of FFT plans that no other FFT libraries can do. Essentially it can

generate all potential binary trees through incremental adjustments

to an integer value—the address of a plan in the proposed repre-

sentation. This incremental adjustment is effectively a rotation of

the tree corresponding to the tree’s address. Consequently, this

approach enables efficient exploration for optimal FFT plans.

3.3 Leaf node set permutation
The node set permutation is denoted by an ordered set 𝒍 = (𝒍0, 𝒍1, ...𝒍𝒏),
where 𝒍𝒊 represents the i-th leaf node in the binary tree. Each 𝒍 𝒊
value ranges between 1 and 4, serving as the exponent of the codelet

size expressed as 2𝒍𝒊 . These components correspond to distinct DFT

problems that REFFT can directly solve using its pre-built codelets.

When seeking the optimal execution plan, it becomes crucial to

explore all permutations of 𝒍 to identify the most suitable candidate.

Within a given DFT size, various codelet permutations may exist,

differing in both the number of leaves |𝒍 | and the magnitude of

each leaf component 𝒍𝒊 . While REFFT does not implement a rank-

ing mechanism for leaf permutations similar to the binary tree

rotation problem, it computationally generates all valid codelet

permutations for the planner to utilize. The algorithm functions by

employing an ordering mechanism, recursively generating permu-

tations. More specifically, given two permutation sets 𝒍 , 𝒍
′

we state

that 𝒍 < 𝒍
′

if:

(1) |𝒍 | < |𝒍
′

|,

(2) 𝒍𝒊 = 𝒍
′

𝒊 for 𝒊 = 1, 2, 𝒎 − 1 and 𝒍𝒎 < 𝒍
′

𝒎 for 𝒊 = 𝒎.

For instance, considering a DFT of size 𝑵 = 16: following the

aforementioned criteria, the set of all valid leaf permutations 𝑳
would begin with the set 𝒍0 = (16) and conclude with the final set

𝒍′𝒎 = (2, 2, 2, 2). There are two types of permutation sets: genera-

tor sets and derived sets. Generator sets serve as the cornerstone

for the algorithm to derive other sets, hence the term ’derived’.

These generator sets are either derived from other generator sets

or originate from the root set, which consists of a single element

𝒍𝒓𝒐𝒐𝒕 = (𝑵 ), where N is the size of the DFT size (in our example

(16) is the root set). If 𝑵 is less than 32, the root set will also serve

as a potential solution; otherwise, it will function as an interim

structure for deriving permutation sets that can be mapped to a

feasible REFFT plan. A complete list of all the codelet permutations

are illustrated in figure 2. The root set 𝒍𝒓𝒐𝒐𝒕 = (16) generates two
additional sets, which also serve as generator sets: 𝒍0 = (2, 8) and
𝒍1 = (4, 4). Subsequently, from 𝒍0 the algorithm generates the de-

rived permutation 𝒍2 = (8, 2), while from 𝒍1 another generator set
is obtained 𝒍3 = (2, 2, 4). Next, from 𝒍3, two additional derived per-

mutations are derived: 𝒍4 = (2, 4, 2) and 𝒍5 = (4, 2, 2) . Finally, from
𝒍5,the algorithm derives the final set 𝒍6 = (2, 2, 2, 2), which does

not generate other permutations, thus leading to the termination

of the algorithm.

Each leaf permutation corresponds to a distinct subspace of all

potential REFFT plans. The quantity of plans is directly proportional

to the number of tree rotations achievable by each permutation.

Equation 1 provides the total number of plans generated by all

permutations:

𝑻𝒐𝒕𝒂𝒍𝑷 𝒍𝒂𝒏𝒔𝑵 =
∑︁

𝒊

𝑪𝒂𝒕𝒂𝒍𝒂𝒏𝑵𝒖𝒎𝒃𝒆𝒓 (|𝒍𝒊 − 1|) (1)

Given that |𝒍𝒊 − 1| is the number of internal nodes 𝒏 of a REFFT

binary tree, we can rewrite equation 1 as follows:

𝑻𝒐𝒕𝒂𝒍𝑷 𝒍𝒂𝒏𝒔𝑵 =
∑︁

𝒊

1
|𝒍𝒊 − 1| + 1

(

2|𝒍𝒊 − 1|
|𝒍𝒊 − 1|

)

(2)

In table 2, we illustrate the total number of plans for 𝑵 = 16 along



Memory Efficiency Oriented Fine-Grain Representation and Optimization of FFT

Figure 2: Leaf permutations for N = 16.

16   

2, 8

8, 2

4, 4       

2, 2, 4      

2, 4, 2      

4, 2, 2     

2, 2, 2, 2

with the number generated by each leaf permutation.

Table 2: Number of Possible plans for 𝑵 = 16.

Codelet Permutation Possible Plans (Catalan Number)

16 1

(2, 8) 1

(8, 2) 1

(4, 4) 1

(2, 2, 4) 2

(2, 4, 2) 2

(4, 2, 2) 2

(2, 2, 2, 2) 5

Total REFFT Plans 15

3.4 Node edges and Data shuffling algorithm
In FFT algorithms, data shuffling is an operation that is particularly

consequential to thememory performance. Aswe traverse down the

binary tree and execute the codelets associated with leaf nodes, data

shuffling becomes inevitable. The operation entails that the input

data sequence does not align with the expected order (referred to as

natural order). For radix-2 FFT problems, shuffling is characterized

by the bit-reversal order. In other words, if we represent the index

of a data input in binary notation, the original input sequence and

the resulting shuffled sequence are in reverse order. For instance,

in a three-stage radix-2 Cooley-Tukey FFT of size 𝑵 = 8, the input
sequence for index 𝒏 = 3 in binary notation is 011, while the

resulting shuffled sequence would actually present the reverse bit

sequence 110, equivalent to 6 in decimal notation. Hence, where

we anticipate finding the input at location 𝒏 = 3, it will instead
appear at location 𝒏 = 6. Consequently, explicit handling and

tuning of all shuffling effects becomes crucial to guarantee the

correct output sequence upon the completion of a REFFT plan’s

execution. To address this, we devised a mathematical model and a

corresponding algorithm to systematically track and compute the

cumulative shuffling effects at any node within the REFFT binary

tree structure.

Each node in the binary tree is connected to the rest of the struc-

ture by up to three directed edges. By examining an internal node

and one of its edges, we can derive another tree structure by con-

densing the entire subtree structure connected to the opposite side

of the edge into a single node. This node’s value would equal the

sum of all its leaf nodes. This value holds computational signifi-

cance as it determines the behavior of data shuffling resulting from

decomposing a large DFT into numerous smaller DFT problems.

Given that each node has four potential directed edges, we refer

to these values as super-right, super-left, sub-right and sub-left. Fig-
ure 3 illustrates a standard node alongside its labeled edges: 𝒔𝒖𝒑𝒓 ,
𝒔𝒖𝒑𝒍 , 𝒔𝒖𝒃𝒓 and 𝒔𝒖𝒃𝒍 . These edge labels are purely conventional

and denote the direction of the edge relative to the internal node it

connects. Indeed, when considering two connected nodes, the edge

can be either super-right/sub-left or super-left/sub-right, depending

on the node in question.

Figure 3: Edge naming conventions for REFFT nodes.

To further illustrate the concept, let us consider the tree in fig-

ure 4.Within this structure, we can observe the internal nodes repre-

sented by 𝒏𝒊 along with the various leaf nodes and their respective

values expressed as power-of-two exponents, denoted as 𝒆𝒙𝒑𝒊 of the

direct DFT size, such that 𝒆𝒙𝒑𝒊 = 𝒍𝒐𝒈2(DFT problem size of leaf node i).

Figure 4: Example of a labeled REFFT binary tree.
 

n0 

n1

11 

n2 

n3 

1 2 

3 2 1 



Salvatore Servodio and Xiaoming Li

For the internal node 𝒏1 the sub-right value is equal to 2, the

super-right is 4 and the sub-left value is 3. Table 3 provides a com-

prehensive overview of all the edge values associated with each

internal node.

Table 3: Edge values for each internal node of the binary tree
shown in Figure 4.

internal node supr subr supl subl

𝒏0 0 4 0 5

𝒏1 4 2 0 3

𝒏2 6 2 0 1

𝒏3 0 3 5 1

The data shuffling algorithm leverages the edge values to as-

certain the data shuffling effects on the input sequence. This algo-

rithm takes as input a twiddle node of the REFFT binary tree and

produces an array of tuple 𝒕 . each containing three components

𝒕𝒊 = (𝒂𝒊, 𝒃𝒊, 𝒄 𝒊). The resulting shuffled position 𝒏′ of a data input
in position 𝒏 is computed based on the summation outlined in equa-

tion 3.

𝒏′ =
∑︁

𝒌

𝒏 mod 𝒂𝒌
𝒄𝒌

∗ 𝒃𝒌 (3)

The data shuffling algorithm encompasses two variants tailored

to distinct scenarios within the REFFT execution life-cycle: travers-

ing a left subtree structure and reaching the final leaf node of the

binary tree. In the former scenario, the execution transitions into a

left subtree structure when an internal node’s left child is an inter-

nal node. This requires continued descent through the left subtree

until a left leaf node is encountered. Upon reaching this condition,

the REFFT planner understands that data shuffling has taken place

within the input sequence, thereby invoking the data shuffling al-

gorithm. Conversely, the latter scenario invariably materializes,

as during the concluding phase of REFFT execution, the output

sequence inevitably assumes some degree of disorder due to the to-

pography of the tree structure. The sole scenario where the output

sequence naturally maintains order is when the REFFT executes

a binary tree decomposition comprising solely left internal nodes

and right leaf nodes, with the exception of the final left node, which

serves as a leaf. In this configuration, the binary tree mirrors a

complete decimation in time setup, wherein the input initially lacks

order and, as the execution advances, the resulting output sequence

gradually aligns in order. In all other cases, REFFT is required to "un-

shuffle" the output sequence, rearranging all out-of-order elements

into their anticipated positions.

Algorithm 2 illustrates the process of deriving data shuffling

parameters based on the tree structure. The algorithm accepts a ref-

erence to the starting internal node as input and produces an array

of tuples comprising metadata necessary for calculating shuffled po-

sitions. It begins by processing the initial internal node provided as

input, computing tuples for both its left and right children. Depend-

ing on specific conditions, the initial value of the 𝒃 component may

vary, subsequent to which tuples are derived and appended to the

output array. Upon completion, the algorithm proceeds upwards

within the binary tree structure, transitioning from the current

internal node in execution to its parent. The 𝒍𝒗 and 𝒓𝒗 variable

function as flags to keep track of whether we have accounted for

the left child and right child nodes respectively, as we ascend up

the binary tree. The termination condition arises immediately after

generating tuples associated with the tree’s root node. At this point,

the while loop ceases execution, and the array 𝑻 array containing

all the tuples is returned as the output.

Let us illustrate the functionality of Algorithm 2 through a prac-

tical example, focusing on the REFFT decomposition as depicted

in Figure 4. Specifically, we examine the shuffling effect within the

internal node 𝒏2, serving as the input parameter 𝒔𝒕𝒂𝒓 𝒕𝑵 𝒐𝒅𝒆 for
the algorithm.

Initially, the algorithm initializes core variables and the while

loop entry condition, then enters the main loop. Since the 𝒍𝒗 flag is

false, it branches into the code block and initializes the value of 𝒃 to

𝒔𝒖𝒑𝒓 . None of the conditions trigger the addition of 𝒔𝒖𝒃𝒓 , thus the
algorithm proceeds to generate tuples for the left child node. As the

value of the left leaf node is 1, it generates a single tuple [2, 256, 1],
which is pushed into the 𝑻 array. The execution flow continues,

checking if the right leaf node has been visited, indicated by the

value of the 𝒓𝒗 variable.Upon entering the code block in this case, it

performs similarly to the left leaf node, setting 𝒃 to the 𝒔𝒖𝒑𝒓 value,
and then proceeds to generate the tuples [4, 64, 2], [8, 128, 4], which
are also pushed to the array 𝑻 . Before ascending the binary tree, it

determines whether 𝒄𝒖𝒓𝒓𝑵 𝒐𝒅𝒆 itself is a left or right child tree with
respect to its parent node, and sets the 𝒍𝒗 and 𝒓𝒗 flags accordingly.

The execution continues, and 𝒄𝒖𝒓𝒓𝑵 𝒐𝒅𝒆 now references 𝒏1. In this

case, only 𝒓𝒗 is false, so only the right child of 𝒏1 generates tuples.
Again, the 𝒍𝒗 and 𝒓𝒗 flags are set accordingly and the execution

continues to ascend the binary tree. Now, 𝒄𝒖𝒓𝒓𝑵 𝒐𝒅𝒆 so it generates
tuples for its right child node and then sets the 𝒇 𝒊𝒏𝒊𝒔𝒉𝒆𝒅 variable

to true. This serves as the exit condition for the while loop, and the

𝑻 array containing all the tuples is returned as the result:

𝑻 = [[2, 256, 1], [4, 64, 2], [8, 128, 4], [16, 16, 8],
[32, 32, 16], [64, 1, 32], [128, 2, 64], [256, 4, 128],
[512, 8, 256]]
Table 4 illustrates the tuples generated for each internal node vis-

ited, starting from 𝒏2, the starting node. To determine the shuffled

position, we employ Equation 3 for each physical position 𝒑 of the

input array, utilizing the components 𝒂𝒌 , 𝒃𝒌 , 𝒄𝒌 of our generated

𝑻 array to compute the shuffled position 𝒑′.

4 WORKFLOW, PLANNER AND EXECUTION
IN REFFT

In this section, we provide an overview of the structure of the

proposed Rotational Enumerated FFT Library (REFFT) and explain

how its internal mechanisms facilitate the execution of Discrete

Fourier Transform (DFT) by exploring an extensive set of poten-

tial solutions and subsequently selecting those that exhibit best

performance. Specifically, we delve into the selection of plans, the

contents of their internal details, the translation of plan directives

by the importer into an executable FFT plan, and the execution

process utilizing the REFFT library.



Memory Efficiency Oriented Fine-Grain Representation and Optimization of FFT

Table 4: Tuples Generated by Algorithmn 2 and binary tree
from Figure 4.

currNode lv, rv (supr, subr, supl, subl)

𝒏2 False, False (6, 2, 0, 1)

left tuples [2, 256, 1]

right tuples [4, 64, 2], [8, 128, 4]

𝒏1 True, False (4, 2, 0, 3)

right tuples [16, 16, 8], [32, 32, 16]

𝒏0 True, False (0, 4, 0, 5)

right tuples [64, 1, 32], [128, 2, 64],

[256, 4, 128], [512, 8, 256]

4.1 Plan Structure
Similar to FFTW, REFFT employs tensors to represent Discrete

Fourier Transform (DFT) problems. These tensors contain elements

for a single DFT execution, organized within a nested tensor struc-

ture to delineate core components: plan, plan passes, plan pass data
and plan slices. A REFFT Plan 𝑷 is a tensor that contains the core

data and is defined as 𝑷 = (𝑵, 𝑷𝑨, 𝑰 , 𝑶, 𝑻 ), where 𝑵 is and in-

teger value and contains the size of the DFT. The nested tensor

𝑷𝑨 embodies the plan passes, 𝑰 and 𝑶 represent the input array

pointer output array respectively and 𝑻 denotes a pointer to the

internal buffer array. Each plan pass, denoted as 𝑷𝑨 = (𝑷𝑫, 𝑷𝑨∗)
and contains details regarding a single DFT problem, alongside a

reference to the subsequent plan pass for execution. The sequence

of plan passes mirrors the order of the codelet permutation set. The

tensor 𝑷𝑫 = (𝑰 , 𝑶, 𝒔 𝒊, 𝒔𝒐, 𝑺𝑳, 𝒏) stores all the granular data needed
to execute the codelet itself, including pointers to the input and

output buffers, as well as stride information. 𝑺𝑳, also called plan
slice, is another tensor containing information for a single codelet

instance. In particular, 𝑺𝑳 is defined as 𝑺𝑳 = (𝑭 , 𝑻𝑾𝑫), where 𝑭 is

an array comprising the data positions of both the inputs and the

outputs, and 𝑻𝑾𝑫 is an array serving as a double buffer for twiddle

operations. Both arrays are generated during the compilation phase

and are essential for minimizing overhead during the execution

of the plan. Hence, REFFT plans exhibit a nested tensor structure,

characterized by the format: plan(PA(PD(PS,...),...),...). This design
adopts a decoupled and modular approach, emphasizing the reten-

tion of comprehensive information. Such caching strategies aim to

facilitate notable performance enhancements.

Similar to FFTW, REFFT employs plans to retainmetadata needed

for executing particular FFT implementations. These plans contain

precise directives and auxiliary data comprehensible to the REFFT

importer, facilitating the translation into executable C-based FFT

solutions. Additionally, REFFT extends this capability by allowing

users to formulate plans using an algebraic notation, which directly

corresponds to a feasible FFT decomposition. The ∗ symbolizes an

internal node, while decimal integers to its left and right signify

leaf nodes. Parentheses are employed to group binary operators

with their operands and other elements. Following algebraic princi-

ples, expressions within inner parentheses are executed first, with

execution proceeding from left to right and from inner to outer

parentheses in the expression. A notable difference arises in the

Algorithm 2 Data Shuffling algorithm

Input: StartNode
initialize empty array 𝑻
𝒂 ← 1
𝒄 ← 0
𝒍𝒗 ← 𝑭𝒂𝒍𝒔𝒆
𝒓𝒗 ← 𝑭𝒂𝒍𝒔𝒆
𝒇 𝒊𝒏𝒊𝒔𝒉𝒆𝒅 ← 𝑭𝒂𝒍𝒔𝒆
𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆 ← 𝑺𝒕𝒂𝒓𝒕𝑵 𝒐𝒅𝒆
while 𝒇 𝒊𝒏𝒊𝒔𝒉𝒆𝒅 ≠ 𝑻𝒓𝒖𝒆 do ⊲ Main Loop:

if 𝒍𝒗 = 𝑭𝒂𝒍𝒔𝒆 then ⊲ Visit the left child node :

𝒍𝒗 ← 𝑻𝒓𝒖𝒆
𝒃 ← 𝒔𝒖𝒑𝒓
if right child ≠ TWIDDLE or right child = TWIDDLE

and ( left child = TWIDDLE or currNode ≠ startNode

or currNode = ROOT)

then
𝒃 ← 𝒃 + 𝒔𝒖𝒃𝒓

for i = 0 to left child value do ⊲ Tuples for left child:

𝒕𝒖𝒑𝒍𝒆𝒊 ← (2𝒂𝒊 , 2𝒃𝒊 , 2𝒄𝒊 )
𝒃 ← 𝒃 + 𝒊
𝒄 ← 𝒂
𝒂 ← 𝒂 + 1
push 𝒕𝒖𝒑𝒍𝒆𝒊 into T

end for

if 𝒓𝒗 = 𝑭𝒂𝒍𝒔𝒆 then ⊲ Visit the right child node :

𝒓𝒗 ← 𝑻𝒓𝒖𝒆
𝒃 ← 𝒔𝒖𝒑𝒓
if right child = TWIDDLE and left child ≠ TWIDDLE

and right child value > 1 and currNode ≠ ROOT

Then
𝒃 ← 𝒃 + 𝒔𝒖𝒃𝒍

for i = 0 to right child value do ⊲ Tuples for right child:

𝒕𝒖𝒑𝒍𝒆𝒊 ← (2𝒂𝒊 , 2𝒃𝒊 , 2𝒄𝒊 )
𝒃 ← 𝒃 + 𝒊
𝒄 ← 𝒂
𝒂 ← 𝒂 + 1
push 𝒕𝒖𝒑𝒍𝒆𝒊 into T

end for

if 𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆 = LEFT CHILD then ⊲ Traverse up:

𝒍𝒗 ← 𝑻𝒓𝒖𝒆, 𝒓𝒗 ← 𝑭𝒂𝒍𝒔𝒆
else if 𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆 = RIGHT CHILD then

𝒍𝒗 ← 𝑭𝒂𝒍𝒔𝒆, 𝒓𝒗 ← 𝑻𝒓𝒖𝒆

if 𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆 = ROOT then
𝒇 𝒊𝒏𝒊𝒔𝒉𝒆𝒅 ← 𝑻𝒓𝒖𝒆

else
𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆 ← 𝒄𝒖𝒓𝒓𝑵𝒐𝒅𝒆.𝒑𝒂𝒓𝒆𝒏𝒕

end while
Output: T

representation of problem sizes between the user-friendly expres-

sion and the binary tree representations. While the user-friendly

expression denotes DFT problem sizes in both base 10 and powers

of 2 (e.g., 2, 4, 8, or 16), the binary tree representations express the

problem size using the base logarithm notation 𝒍𝒐𝒈2(problem size).

The latter notation is employed in plan implementation due to its

efficiency in reducing overall planning time. Conversely, the former



Salvatore Servodio and Xiaoming Li

notation enhances user experience by offering a more intuitive

approach to expressing FFT decompositions.

4.2 Emperical Performance Tuning
REFFT employs empirical tuning to explore and determine the best

performing plan. This exploration is facilitated by its utilization

of a regression-based search strategy. We need to point out that

the best-performing plan found does not necessarily represent the

best achievable plan within the search space. The search strategy

yields two key outputs: the leaf node permutation 𝒍 and the binary

encoding of the tree rotation 𝑿 . These outputs are then translated

into a standardized plan that REFFT utilizes for the actual low-level

implementation. The following presents an example of an REFFT

plan compared side by side with an FFTW plan for a problem size

of 217.
( fftw-3.3.8 fftw_wisdom #x4be12fff ...
(fftw_dft_vrank_geq1_register 0 #x11bdd #x11bdd #x0 ...)
(fftw_codelet_t1_16 0 #x11bdd #x11bdd #x0 #x45ebf64b ...)
(fftw_codelet_n1_64 0 #x11bdd #x11bdd #x0 #xbaa459d1 ...)
(fftw_dft_vrank_geq1_register 0 #x11bdd #x11bdd #x0 ...)
(fftw_codelet_t1_16 0 #x11bdd #x11bdd #x0 #x2dbefd0a ...)
(fftw_codelet_t1_8 0 #x11bdd #x11bdd #x0 #x66101a7a ...)
)

( refft-1.0.0 size 131072
refft_info (((4*8)*16)*16)*16 111100000 2_3_4_4_4
refft_pass dtfsz 4 strin 32768 strout 1 n1 4 n2 1
refft_twd n1 8 n2 4
refft_pass dtfsz 8 strin 4 strout 4 n1 8 n2 4
refft_twd n1 16 n2 32
refft_pass dtfsz 16 strin 32 strout 32 n1 16 n2 32
refft_twd n1 16 n2 512
refft_pass dtfsz 16 strin 512 strout 512 n1 16 n2 512
refft_twd n1 16 n2 8192
refft_pass dtfsz 16 strin 8192 strout 8192 n1 16 n2 8192
)

A major distinction between between FFTW and REFFT lies in

their approach to solution space exploration. While FFTW excels

in providing rapid solutions, it operates without assumptions re-

garding the extent or granularity of the solution space it explores.

In contrast, REFFT meticulously maps all exploitable solutions by

considering permutation sets of a given problem size and ranking

their corresponding tree rotations. This capability proves crucial,

as different plans exhibit distinct stride distributions during DFT

execution, significantly impacting memory performance. Therefore,

REFFT evaluates plans to ensure tailored solutions optimized for

the memory architecture of a specific machine.

4.3 The Planner
The REFFT planner comprises two primary components: the plan

explorer and the importer. The former is responsible for searching

for the best-performing plan of a given size, while the latter imports

the plan directives as input and constructs the executable plan

as output. Currently, the plan explorer implements a regression-

driven strategy to explore and identify the most efficient plans. It

accomplishes this by navigating the solution space in two steps: first,

identifying the optimal codelet permutation, and then determining

the optimal tree rotation for the given codelet permutation.

Currently, the REFFT architecture only supports codelet sizes

of 2, 4, 8 or 16. Given that these sizes are preconstructed, future

efforts will include expanding the supported sizes to include 32 and
64 among the possible codelet sizes.

To elaborate on the first step, the codelet permutation is a tensor

composed of an ordered set of codelets, each potentially sized as 2,
4, 8, or 16. For a DFT problem of size 𝑵 , this permutation entails

a frequency count for each codelet and a specific order in which

they appear. Table 5 illustrates an example of a DFT of size 1,024

and some of the possible codelet permutations.

Table 5: Example of possible codelet permutations for 𝑵 =
1024.

N = 1024

1, 3, 3, 3

2, 2, 2, 4

1, 1, 1, 3, 4

1, 1, 4, 4

1, 3, 3, 3

2, 2, 2, 4

2, 4, 4

To expedite the searching, we conducted a regression analysis to

estimate the correlation between codelet permutations and overall

execution time. Specifically, we profiled and benchmarked all plans

ranging from size 𝑵 = 23 up to 𝑵 = 212. Next,we expanded our

data acquisition efforts by sampling plans for DFT sizes 𝑵 = 213

up to 𝑵 = 220, considering the exceptionally vast theoretical plan

space (for size 𝑵 = 220 there are potentially more than 168 billion

possible plans). For the remaining values ranging from 𝑵 = 221

up to 𝑵 = 230, we derived them through linear projections based

on coefficients from known sizes. Beginning with extrapolated

projections, the plan explorer addresses the permutation set as

follows: for a DFT of size𝑵 = 2𝒙 , it selects two codelet sizes 𝒍1 = 2𝒂

with a frequency 𝒇1 and score 𝒔1 and 𝒍2 = 2𝒃 with frequency 𝒇2
and score 𝒔2 such that 𝒔1 < 𝒔2. At this point, we have can have one

of two possible scenarios:

(1) 𝒙 = 𝒇1 ∗ 𝒂,
(2) 𝒙 = 𝒇1 ∗ 𝒂 + 𝒇2 ∗ 𝒃 .

In the first case, the frequency 𝒇1 of 𝒂 can be maximized to allow

the DFT size to be completely decomposed into 𝒇 smaller problems

of size 2𝒂 . For example, considering a DFT of size 𝑵 = 212 and

assuming that 𝒍1 = 23 = 8 has the lowest score in the hash table

for the given DFT problem size, it becomes possible to decompose

𝑵 with only codelets of size 𝒍1 with a frequency 𝒇1 = 4.
In the second scenario, solving the DFT problem with only one

codelet size type is not feasible. In this case, the plan explorer

incorporates another codelet size with the second-lowest score

to complete the decomposition. For example, for a DFT size 𝑵 =
219, the two lowest-scoring codelet sizes are 𝒍1 = 23 = 8 and

𝒍2 = 22 = 4, with exponents 𝒂 = 3 and 𝒃 = 2 respectively. The

planner resolves the permutation by assigning frequencies 𝒇1 = 5
and 𝒇2 = 2, satisfying the equation 19 = 5 ∗ 3 + 2 ∗ 2.



Memory Efficiency Oriented Fine-Grain Representation and Optimization of FFT

After generating the permutation, the plan explorer proceeds to

search for the optimal-performing REFFT binary tree. It’s worth

noting that the number of possible trees equals the Catalan number

of the size of the leaf permutation set. To illustrate, considering

𝑵 = 219 and the permutation set has a size |𝒍 | = 𝒇1 + 𝒇2 = 5 + 2 =
7, we potentially have 429 binary tree decompositions to choose

from. Each binary tree can be assigned an ordered integer value,

enabling the plan explorer to start ranking from 1 and benchmark

a small percentage of the binary tree decompositions to select the

optimal-performing one, within the limits of the naive strategy

implementation and capable of outperforming FFTW. Empirical

evidence indicates that the optimal-performing binary tree typically

lies within the top 10 percent of the ranking space. Using the earlier

example, the optimal-performing binary tree would have a ranking

value 𝒓 such that 429∗.09 ≤ 𝒓 ≤ 429. At this stage, the plan explorer
has a set of promising implementation candidates. Subsequently,

the plan explorer selects one of three possible techniques:

• For small 𝑵 values (less than 𝑵 ≤ 219), the plan explorer

evaluates all tree decompositions to find the best-performing

one among them.

• For larger 𝑵 values (220 ≤ 𝑵 ≤ 224), the plan explorer

evaluates the top ten percent of the available plans, one by

one, to identify the best-performing decomposition.

• If 𝑵 is very large (𝑵 ≥ 225), the plan explorer evaluates

the top ten percent of the available plans, sampling every

jth rank, to find the best-performing decomposition.

Once the plan explorer has identified a plan solution, it generates

the final REFFT plan comprehensible for the plan importer. The

primary strategy of REFFT is to generate as much as possible at com-

pile time to maximize memory access efficiency, leading to faster

execution. To achieve this goal, the plan importer leverages precon-

structed codelets that serve as a scaffold, replicable and populated

with the necessary data for a single codelet instance. This approach

is particularly effective in the twiddle computation space, where

twiddle operands can be determined during the compile phase by

knowing the size 𝑵 of the DFT and the problem decomposition

structure. In the case of REFFT, such parameters are expressed via

the binary tree generated from the codelet permutation set and

the tree edge layout 𝒙 . As a result, it becomes possible to calculate

all possible twiddle data during the plan compilation phase. These

twiddle values can then be cached in a global space where each

codelet instance can reference them, or they can be double-buffered

so that each codelet has direct access to its own copy of the twiddle

operands. This approach reduces the number of required address-

related instructions during the execution phase of the REFFT plan.

However, the trade-off is a somewhat increased plan memory foot-

print. Additionally, input data for all codelet instances is aligned

to reduce the need for pointer address calculations. Expressions

are grouped to favor cache locality and exploit the instruction-

level parallelism of modern architectures. As previously mentioned,

REFFT leverages pre-built codelets for sizes 2, 4, 8, and 16. Any
DFT problem will be solved with a mix of these codelet sizes.

4.4 Plan Execution
The execution of REFFT plans is conceptually much simpler than

other components of REFFT’s architecture. During this phase, REFFT

aims to group or coalesce memory accesses with similar patterns,

with the expectation that batch processing of memory accesses will

yield the best overall performance. Any form of irregular memory

access is considered overhead that REFFT strives to avoid. The

design of the plan executor in REFFT is similar to that of FFTW,

facilitating easy swapping of one with the other. Once invoked,

execution begins, and the executor iterates through all plan passes,

calling the function pointer that references one of the prebuilt

codelets and providing the plan pass data as an input parameter.

The codelet interface is generalized with the goal of reducing pro-

cedural calling overhead, while embedding the complexities of FFT

execution logic within the data itself. Furthermore, REFFT plans

can be reused with other data input sets as long as they are of the

same DFT size. Users simply need to swap out the reference of

the old input array with the new one and provide an output array

reference for storing the results.

5 EVALUATION
We will first examine REFFT from both performance and correct-

ness perspectives. Following this, we will conduct a detailed analy-

sis of its interactions with various architecture features, utilizing

hardware counters to aid in our assessment.

5.1 Experimental Setup
We selected three current CPU architectures for experimentation:

the Intel i7 1300F, AMD Ryzen 9 5900, and AMD Ryzen 7845HX. All

experimental computers are equipped with Ubuntu 20 and GCC,

and include the FFTW library version 3.3.8, which serves as the

baseline implementation of FFT against which REFFT is compared.

Table 6 provides further information regarding each CPU, including

clock frequency and various memory capacities.

Table 6: Experimental Platform Specification.

Model Frequency L1 L2 L3 SYSTEM
Cache Cache Cache RAM

1300F 2.1 GHz 80KB 2MB 30MB 64GB

5900 3.7 GHz 64KB 6MB 64MB 64GB

7845HX 3 GHz 64KB 1MB 64MB 64GB

Testing was conducted on FFT problem sizes ranging from 64

(26) to 32M (225). To mitigate noise during testing, each size was

executed multiple times. Specifically, for each size, the number of

executions was normalized so that the total accumulated time was

approximately equal to a threshold ranging from 100 milliseconds

for smaller sizes up to 3,000 milliseconds for the larger sizes. This

approach ensures a consistent relative error measurement when

evaluating performance. Additionally, after each execution, a cache

flushing routine was performed to clear the cache for the next

iteration.



Salvatore Servodio and Xiaoming Li

5.2 Correctness
To verify the correctness of REFFT, we compare its outputs with

those generated by FFTW, which serves as the source of truth.

Since the outputs of both libraries are complex number arrays,

we compare the differences among the respective values of the

arrays. Therefore, we utilize a well-established metric for error

analysis called the Root Mean Square Error (RMSE). The formula

for RMSE is shown in Equation 4, where 𝑵 represents the problem

size, while ®𝑭𝑾 and ®𝑹𝑭 represent the output arrays of FFTW and

REFFT, respectively.

𝑹𝑴𝑺𝑬 ( ®𝑭𝑾, ®𝑹𝑭 ) =
√︄

∑𝑵−1
𝒊=0 [ℜ(𝑭𝑾𝒊 ) − ℜ(𝑹𝑭𝒊 ) )2 + (ℑ(𝑭𝑾𝒊 ) − ℑ(𝑹𝑭𝒊 ) )2 ]

2𝑵

(4)

Figure 5 shows the RMSE for all the problem sizes. As shown,

the RMSE values are between 1𝑬−7 and 1𝑬−9, average in the order

of 1𝑬−8. These errors are notably small for the double-precision

data type, indicating that the REFFT library effectively implements

the DFT/FFT algorithms.

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

1×10 22

1×10 18

1×10 14

1×10 10

1×10 6

RM
SE

Figure 5: RMSE of REFFT vs. FFTW.

5.3 Performance Evaluation
Performance for both REFFT and FFTW is measured using the

number of processor cycles. This metric is made possible by uti-

lizing hardware counters available on modern CPU architectures,

accessed via a library called PAPI. The number of cycles is then

converted to absolute time using the processor frequency. To fa-

cilitate a better comparison of benchmark results between REFFT

and FFTW, we plot performance using a metric denoted as Million

Floating Point Operations Per Second (MFLOPS). MFLOPS is calcu-

lated as (5𝑵 ∗ 𝒍𝒐𝒈2(𝑵 ))/𝒕 where 𝑵 is the problem size and 𝒕 is the
execution time in microseconds. This formula has been employed

in the FFTW paper [6] and other research papers on FFT.

Figure 6 illustrates the performance evaluation across the three

platforms. The plots yield two key observations. Firstly, REFFT

consistently outperforms FFTW across all platforms. For instance,

in the case of the Ryzen 9 7845HX, the average speedup across

all sizes is approximately 17.3%, with peaks reaching as high as

45.7%. Similar performance gains have been observed for the other

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

2000

3000

4000

5000

6000

M
FL

OP
S

REFFT (Ours) FFTW

(a) Performance on Ryzen 9 7845HX speedup: mean 17.3%, max 45.7%

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

2000

2500

3000

3500

4000

4500

M
FL

OP
S

REFFT (Ours) FFTW

(b) Performance on Ryzen 9 5900 speedup: mean 11%, max 23.3%

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

3000

4000

5000

6000

7000

8000

9000

10000

M
FL

OP
S

REFFT (Ours) FFTW

(c) Performance on I7 13700F speedup: mean 18%, max 40%

Figure 6: Performance Comparison: REFFT vs. FFTW.



Memory Efficiency Oriented Fine-Grain Representation and Optimization of FFT

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

104

105

106

107

Nu
m

be
r o

f E
ve

nt
s

REFFT (Ours) FFTW

(a) Number of Data Translation Lookaside Buffer Misses

15 16 17 18 19 20 21 22 23 24 25
Log2(Problem Size)

104

105

106

107

108

Nu
m

be
r o

f E
ve

nt
s

REFFT (Ours) FFTW

(b) Number of Level 2 Data Cache Misses

Figure 7: Hardware Counter Profiling: REFFT vs. FFTW.

CPU architectures. Secondly, as the problem size increases, the

advantage of REFFT over FFTW diminishes to some extent. This

phenomenon is likely attributable to the "naive" implementation of

our searching module. While it excels in finding better-performing

plans for smaller problems, the exponential increase in potential

plans for larger sizes poses a challenge. The planner conducts only

a superficial search within a short time frame, aiming to identify

"sufficiently" performing solutions, which nonetheless represent

winning plans.

5.4 Performance Profiling
Next, we analyze the performance profile of REFFT in contrast

with FFTW to better understand the source of the performance

improvement. Our focus is on understanding why the selected

plans indeed offer improved performance, with particular attention

given to their impact on memory performance.

The profiling is conducted using hardware counters, which are

available on almost all modern processors. Hardware counters al-

low engineers to monitor counts of specific architectural events,

which can reveal software behavior that would otherwise go unde-

tected or be difficult to extract from the noise of other concurrent

processes. We focus on two events closely tied to memory perfor-

mance: TLB_DM, which records the number of data translation

lookaside buffer misses, and L2_DCM, which counts the number

of level 2 data cache misses. Both of these events are individually

supported by the Ryzen architectures that we tested.

However, it’s important to note that our profiling analysis en-

countered a limitation: the recent Intel processor utilized in our ex-

periment is not yet supported by the PAPI counters. Consequently,

for this specific Intel CPU, we were unable to utilize hardware

counters for further analysis. Instead, we relied on the gettimeof-

day function to obtain execution time data. Despite this limitation,

we were still able to evaluate the contemporary Intel CPU’s perfor-

mance effectively.

Figure 7 illustrates the profiling of TLB_DM and L2_DM events

for both FFTW and REFFT on the Ryzen 9 5900. The figures demon-

strate that REFFT outperforms FFTW in these two event metrics.

The reduced number of translation lookaside buffer (TLB) misses

strongly correlates with the efficiency of our library. Conversely,

L2_DCM illustrates how REFFT’s advantage slightly diminishes

as the problem size increases. This observation aligns well with

REFFT’s lack of larger-size codelets compared to FFTW, result-

ing in diminishing performance as the FFT problem size grows.

Larger-size codelets enable greater symmetry and offer more opti-

mization opportunities for FFT problems, while reducing overhead

from managing smaller-size codelet executions. Therefore, as the

FFT size increases, having larger prebuilt codelet sizes becomes

advantageous. The results affirm the validity of our core hypothesis:

REFFT effectively selects plans that lead to more efficient memory

management, thereby enhancing overall performance.

6 CONCLUSION
In conclusion, the Rotational Enumerated FFT Library (REFFT) pre-

sented in this paper offers a promising approach to computing

Discrete Fourier Transforms (DFT) by exploring the decomposi-

tion space of memory accesses in FFT. Through the utilization of

binary tree structures, REFFT enables effective tuning for mem-

ory efficiency, allowing fine-grained navigation of a vast solution

space. Our comparative analysis against FFTW, a widely adopted

FFT library, demonstrates an average speedup of 14.3% across three

contemporary Intel and AMD processors. These findings under-

score the potential of REFFT to significantly enhance computational

performance across diverse processor architectures. With its in-

novative methodologies and tangible performance gains, REFFT

represents a valuable contribution to the field of FFT optimization

and memory management.



Salvatore Servodio and Xiaoming Li

REFERENCES
[1] L. Bluestein. 1970. A linear filtering approach to the computation of discrete

Fourier transform. Audio and Electroacoustics, IEEE Transactions on, 18, 4, 451–
455.

[2] Y. Chen and X. etc. Cui. 2010. Large-scale FFT on GPU clusters. In Proceedings
of the 24th ACM International Conference on Supercomputing. ACM, 315–324.

[3] J.W. Cooley, P.A.W. Lewis, and P.D. Welch. 1970. The fast fourier transform

algorithm: programming considerations in the calculation of sine, cosine and

laplace transforms. Journal of Sound and Vibration, 12, 3, 315–337. doi: https:
//doi.org/10.1016/0022-460X(70)90075-1.

[4] J.W. Cooley and J.W. Tukey. 1965. An algorithm for the machine computation

of complex Fourier series. Mathematics of Computation, 19, 90, 297–301.
[5] P. Duhamel and M. Vetterli. 1990. Fast fourier transforms: a tutorial review and

a state of the art. Signal Process., 19, 4, (Apr. 1990), 259–299.
[6] M. Frigo and SG Johnson. 1997. The Fastest Fourier Transform in the West.

[7] Matteo Frigo and Steven G. Johnson. 2005. The design and implementation of

fftw3. Proceeding of the IEEE, 93, 2, 216–231.
[8] N.K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. 2008. High

performance discrete Fourier transforms on graphics processors. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 1–12.

[9] Liang Gu, Xiaoming Li, and Jakob Siegel. 2010. An empirically tuned 2d and 3d

fft library on cuda gpu. In Proceedings of the 24th ACM International Conference

on Supercomputing (ICS ’10). ACM, Tsukuba, Ibaraki, Japan, 305–314. isbn:

978-1-4503-0018-6.

[10] Liang Gu, Jakob Siegel, and Xiaoming Li. 2011. Using gpus to compute large

out-of-card ffts. In Proceedings of the international conference on Supercomputing
(ICS ’11). ACM, Tucson, Arizona, USA, 255–264. isbn: 978-1-4503-0102-2.

[11] A. Nukada and S. Matsuoka. 2009. Auto-tuning 3-D FFT library for CUDAGPUs.

In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. ACM, 1–10.

[12] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka. 2008. Bandwidth intensive

3-D FFT kernel for GPUs using CUDA. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing. IEEE Press, 1–11.

[13] CM Rader. 1968. Discrete Fourier transforms when the number of data samples

is prime. Proceedings of the IEEE, 56, 6, 1107–1108.
[14] Salvatore Servodio and Xiaoming Li. 2021. An efficient shuffle-light fft library.

In 2021 IEEE International Performance, Computing, and Communications Con-
ference (IPCCC), 1–10. doi: 10.1109/IPCCC51483.2021.9679431.

[15] Richard P. Stanley. 2015. Catalan Numbers. Cambridge University Press.

[16] Shmuel Winograd. 1980. Arithmetic Complexity of Computations. Society for

Industrial and Applied Mathematics. eprint: https://epubs.siam.org/doi/pdf/10

.1137/1.9781611970364. doi: 10.1137/1.9781611970364.

[17] S. Zaks. 1980. Lexicographic generation of ordered trees. Theoretical Computer
Science, 10, 1, 63–81. doi: http://dx.doi.org/10.1016/0304-3975(80)90073-0.

https://doi.org/https://doi.org/10.1016/0022-460X(70)90075-1
https://doi.org/https://doi.org/10.1016/0022-460X(70)90075-1
https://doi.org/10.1109/IPCCC51483.2021.9679431
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970364
https://doi.org/10.1137/1.9781611970364
https://doi.org/http://dx.doi.org/10.1016/0304-3975(80)90073-0

	Abstract
	1 Introduction
	2 Background
	3 Foundational Concepts
	3.1 Notations
	3.2 Binary tree ranking and unranking
	3.3 Leaf node set permutation
	3.4 Node edges and Data shuffling algorithm

	4 Workflow, Planner And Execution in REFFT
	4.1 Plan Structure
	4.2 Emperical Performance Tuning
	4.3 The Planner
	4.4 Plan Execution

	5 Evaluation
	5.1 Experimental Setup
	5.2 Correctness
	5.3 Performance Evaluation
	5.4 Performance Profiling

	6 Conclusion

