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ABSTRACT
Reuse distance analysis is a widely recognized method for applica-

tion characterization that illustrates cache locality. Although there

are various techniques to calculate the reuse distance profile from

the dynamic memory trace of a program, it is both time and space-

consuming due to the requirement of collecting dynamic memory

traces from runtime. In contrast, static analysis-based reuse profile

estimation is a promisingly faster approach since it is calculated in

the compile time without running the program and collecting the

traces. In this work, we present a static analysis technique to deter-

mine the reuse distance profile of primarily loop-based programs.

For an input program, we generate a basic block-level control flow

graph and the execution count by analyzing the LLVM IR file. We

present the memory accesses of the application kernel in a compact

bracketed format and use a recursive algorithm to predict the reuse

distance histogram. Under the hood, we deploy a separate predictor

that unrolls the loop for smaller bounds, generates a temporary

reuse distance profile for those small cases, and using these pro-

files, predicts the actual loop bound. Results show that our tool can

predict 95% on average of cache hit rates, performs quite similar to

the dynamic predictor, and is certainly much faster than dynamic

approaches.

1 INTRODUCTION
In this era of high-performance computing, where microchips con-

sist billions of transistors, it is important for applications to utilize

this immense computing power. Therefore, performance modeling

and application profiling play a significant role in helping us to un-

derstand how better a computing system is being utilized. A reuse

distance histogram is a popular metric to measure an application’s

efficient memory utilization performance. It represents an overall

picture of how often the same memory is used. It will also help

to estimate cache hit rates as a metric of program performance. A

higher cache hit rate indicates lower execution time for the program

because it significantly reduces the number of times a cache line

needs to be fetched from the main memory.

Reuse distance (RD) represents the number of unique memory

accesses between two consecutive accesses to the same memory

address. The reuse distance profile is the histogram of the reuse

distances for all the memory accesses of a program. It has been

an interesting topic for researchers to calculate reuse distance his-

tograms correctly and in a faster way. They proposed both dynamic

and static approaches. In the dynamic technique, dynamic memory

traces are collected by running the program and then the calculation

process begins. PARDA [7] calculates reuse profile from dynamic

memory trace using a multi-process architecture. ReuseTracker [8]

is a recent investigation on the parallelization of the dynamic reuse

profile calculation approach. Even though these tools are faster and

accurate, these tools require program execution and trace collection

1 int i, j, k, alpha = 99;
2 int tmp [50][50] , A[50][50] , B[50][50];
3

4 for (i = 0; i < 30; i++)
5 for (j = 0; j < 20; j++)
6 {
7 for (k = 0; k < 10; ++k)
8 tmp[i][j] += alpha * A[i][k] * B[j][k];
9 }

Figure 1: Example code of nested loop and arrays

which consumes a large amount of time and disc space. On the con-

trary, static approaches are faster compared to dynamic approaches

as it does not require runtime trace collection. [1, 2, 4, 6] algorithms

are significantly faster to calculate reuse distance histogram. How-

ever, they are limited in terms of supported programming language.

On the other hand, our approach is LLVM compiler infrastructure

based and thus platform independent and supports a wide array of

programming languages supported by the LLVM project. A large

portion of modern program kernels consist of stencil loops. All

these factors motivated us to develop methodologies to predict

reuse profiles for nested loops and arrays of program kernels stati-

cally. Figure 1 helps to understand the problem more.

In this work, we introduce a static approach to estimate reuse

profiles using LLVM intermediate representation (IR) using our

calculation method. LLVM [5] provides a large array of static code

analysis tools to characterize programs such as basic blocks with

variable references inside, each basic block execution time, opera-

tion sequences, and a lot more. With the help of this tool, we can

have an intermediate representation of basic blocks and generate a

sequence of them. From there, we have the information of variables

when they might be executed. Using our static calculator, we can

produce some smaller loop bound examples, and then, by analyzing

them, we can predict the bigger bound. In this way, we can achieve

independence in the loop bound.

In the beginning, we get the LLVM IR file of the program using

the Clang compiler. To read the LLVM IR file, the correspondent

reader was utilized. It generates the static program trace. Then,

using a trace analyzer, the static trace is analyzed and produces

the basic Block Control Flow Graph (CFG). Each basic block of the

program is represented as a node in the graph. After that, a CFG

analyzer takes the graph as input, using memory use reference,

and branch probabilities, it represents the whole program as a loop

annotated trace which is readable and shows the loop bounds and

array positions. At this point, we can not calculate the array refer-

ences with a loop because the variables change the array position.

To get a full picture of array reference changing, we have flattened

the traces for smaller loop bounds such as 2, 3, and 4. From that

flattened trace, now we can calculate the reuse profile for the reuse

profile for those smaller loop bounds. Then, we have to reach the

given bound in the program, and therefore, we have developed
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Figure 2: Steps of static analysis based reuse profile prediction

a static predictor that observes the changes in the reuse profile

from 2 to 3 and 3 to 4. Based on the analysis, the predictor then

generates some mathematical relationship between the number of

those profiles and after having the equation, it predicts the n bound

of loop.

2 RELATEDWORK
Researchers are trying to find a more optimum solution for the

reuse profile calculation.

Among the static techniques, Narayanan et al. [6] tried to cal-

culate the reuse profile by using a syntax tree. However, the array

scenario inside a loop is not supported by this technique. Meng-Ju

Wu [9], investigated reuse distance on multi-core cache hierar-

chy scalability. They also showed that interference-based locality

degradation is more significant than sharing-based locality degra-

dation. However, their models have increased the amount of cache

misses. Bush et al. [3] introduced some real-world programs that

have in static approach, however, they are limited to only a few

applications.

PARDA [7] proposed the first-ever effort to parallelize perfor-

mance analysis with Reuse Distance. They divided their memory

trace into multiple processors and applied a tree-based algorithm

to calculate reuse distance. Due to the optimization, they achieved

13 to 50 times speedup and full accuracy. However, they have to

wait until the runtime trace collection process is completed.

Our method takes a probabilistic approach, utilizing LLVM IR

to calculate reuse profiles and other program metrics. This strat-

egy allows us to accommodate multiple programming languages

supported by the LLVM compiler infrastructure. Importantly, it

generates precise profiles without requiring modifications to the

source code. Furthermore, our outputs are rigorously tested against

advanced dynamic models to ensure accuracy and reliability.

3 METHODOLOGY
This section elaborates on our sub-modules of static analyzers in

detail. The info-graphic workflow is explained in the Figure 2. Our

tool takes a source code program as an input and after doing all the

processing, it generates a cache hit rate. In each step, we describe

the context based on the example code given in Figure 1.

3.1 Produce LLVM IR using Clang Compiler
First, using the command clang -g -c -emit-llvm 2mm.c, we create
LLVM Intermediate Representation of the source program from the

Clang Compiler. As a compiler, clang executes pre-processing and

compilation steps. Usually, it stores LLVM IR in a binary format, also

known as bit-code, and generates the final executable file. However,

since we have instructed to generate the middle step file by saying

-emit-llvm for the 2mm.c file, it outputs the IR instead. It also

includes the debug information.

3.2 Static Trace from LLVM IR Reader
In this step, the IR reader takes input from the LLVM IR file, reads

all over the program, and produces all the basic blocks including the

variable and instruction included inside, entry and exit of functions,

all other labels and derails of load-store or branch instructions and

a lot more. Arrays are identified as a list of GEP addresses and we

can enlist how many arrays are there with their dimensions. We

can also find the loop variables. If an array is inside the loop it

shows memory references, however, at this point, we can not say

which loop variable is accessing the array. It will be decided at a

later stage.

3.3 Trace Analyzer
There are two sub-parts of the Trace analyzer.

A) Producing Control Flow Graph (CFG): The main goal of the

task is to generate a graph with the specific information of parent

and child nodes. Each node is an independent Basic Block. The

correspondent memory accesses are kept on the same block one by

one. Every successors and predecessors are marked. Therefore, each

node knows what are the probable destination nodes. Each vertex

of that graph is directional and represents source and destination

nodes. The vertex are weighted and it represents the probability of

going that path.

B) Basic Block Execution Counts :
Since we already have the Control Flow Graph completed at the

previous stage, now we exactly know the execution count of a basic

block. We can assume that all the memory references inside that

basic block will be executed at the same number of times of the

execution count.

3.4 Loop Annotated Trace from CFG Analyzer
At this moment, we have the CFG, branch probabilities, direction

with Basic Blocks, and their execution counts. It looks like same

as the memory reference, however, we can generate a virtual trace.

We also have the edge probabilities in the CFG. Using all that infor-

mation, we can calculate the path with maximum probability. By

selecting that path, we can separate the loop or circular connection.
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We can mark the loop starting, and ending boundary and also with

a loop bound. After this processing, we have the below output.

However, we have to mark the arrays with their loop variable,

or else we can not keep track of the memory reference to calculate

the reuse. Manually we added a loop variable with the array. We

search for the proper GEP name of the array, then we looked for

the IR file again to identify the dimension of the array. Usually,

the array controlling variable has a load call before the array, if

it is not immediately accessed back to back. For example, in the

trace, arrayidx8 is two dimensional in the IR, therefore, previously

accessed 2 variables are this array’s loop controlling variable. ar-

rayidx8[i][k] in this example. After updating, the new trace looks

like as following.

retval→ alpha→ i→ [30→ i→ j→ [20→ j→ k→ [10→
k→ alpha→ i→ k→ A~i~k→ j→ k→ B~j~k→ i→ j→
tmp~i~j→ tmp~i ~j→ k→ k→ ]→ k→ j→ j→ ]→ j→ i
→ i→ ]→ i

3.5 Loop Flattening: Smaller Loop Bounds
Since we have to calculate for big loop bounds and the array is

involved inside the loop. we can not predict in a static way until we

see some smaller complete scenarios. For example, in the above ex-

ample, the 3 nested loop bounds are 30-20-10 and the loop variables

are i-j-k. It is very time-consuming to produce all flattened scenar-

ios for the full-length loop bound [figure 3 explains the process].

At first, we make 2-2-2 loop bounds as our baseline and flatten the

whole loop. It looks as follows for the first i

[’i’, ’j’,
’j’, ’k’,
’k’, ’alpha’, ’i’, ’k’, ’A~i~k-0-0’, ’j’, ’k’, ’B~j~k-0-0’, ’i’, ’j’, ’tmp~i~j-
0-0’, ’tmp~j-0-0’, ’k’, ’k’,
’k’, ’alpha’, ’i’, ’k’, ’A~i~k-0-1’, ’j’, ’k’, ’B~j~k-0-1’, ’i’, ’j’, ’tmp~i~j-
0-0’, ’tmp~i~j-0-0’, ’k’, ’k’,
’k’, ’j’, ’j’,
’j’, ’k’,
’k’, ’alpha’, ’i’, ’k’, ’A~i~k-0-0’, ’j’, ’k’, ’B~j~k-1-0’, ’i’, ’j’, ’tmp~i~j-
0-1’, ’tmp~i~j-0-1’, ’k’, ’k’,
’k’, ’alpha’, ’i’, ’k’, ’A~i~k-0-1’, ’j’, ’k’, ’B~j~k-1-1’, ’i’, ’j’, ’tmp~i~j-
0-1’, ’tmp~i~j-0-1’, ’k’, ’k’,
’k’, ’j’, ’j’,
’j’, ’i’, ’i’, ......]

Now, we calculate flattened traces for 2-2-3 to observe how they

change in the reuse profile and mark the impact of increasing 1 k.

In the same way, from analyzing the 2-3-2 profile, we observe the

increase of 1 j. After that, we are interested to see 2-3-3 when they

both increase by 1. Here we will try to find a coefficient of j and k

increase. After building a connection from these small bounds, we

want to reach 2-20-10 bound. This process will be explained in the

dilation section.

3.6 Reuse Profile Calculation
Then we calculate the reuse profile for those flattened stack traces

individually. The reuse profile is the histogram of reuse distance

whereas reuse distance is the unique reference between two same

memory access. We have used the Least Recently Used technique to

Algorithm 1 Calculating Reuse Profile

1: procedure CalcReuseProfileFlattened(𝑠𝑡𝑎𝑐𝑘_𝑡𝑟𝑎𝑐𝑒)
2: 𝑟 𝑓 ← {}
3: 𝑖𝑛𝑓 ← [ ]
4: 𝐿𝑅𝑈 _𝑑𝑖𝑐𝑡 ← {}
5: for 𝑖𝑛𝑑𝑒𝑥, 𝑖𝑡𝑒𝑚 in enumerate(𝑠𝑡𝑎𝑐𝑘_𝑡𝑟𝑎𝑐𝑒) do
6: if 𝑖𝑡𝑒𝑚 not in 𝐿𝑅𝑈 _𝑑𝑖𝑐𝑡 then ⊲ If the item not found

7: 𝑖𝑛𝑓 .append(𝑖𝑡𝑒𝑚)

8: 𝐿𝑅𝑈 _𝑑𝑖𝑐𝑡 [𝑖𝑡𝑒𝑚] ← 𝑖𝑛𝑑𝑒𝑥

9: else
10: 𝑠𝑢𝑏_𝑙𝑖𝑠𝑡 ← 𝑠𝑡𝑎𝑐𝑘_𝑡𝑟𝑎𝑐𝑒 [𝐿𝑅𝑈 _𝑑𝑖𝑐𝑡 [𝑖𝑡𝑒𝑚] + 1 :

𝑖𝑛𝑑𝑒𝑥] ⊲ Take all subset between two refs

11: 𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑡𝑒𝑚𝑠 ← list(set(𝑠𝑢𝑏_𝑙𝑖𝑠𝑡 )) ⊲ Remove

duplicates

12: 𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← len(𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑡𝑒𝑚𝑠)

13: if 𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 in 𝑟 𝑓 then
14: 𝑟 𝑓 [𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒] ← 𝑟 𝑓 [𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒] + 1
15: else
16: 𝑟 𝑓 [𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒] ← 1

17: end if
18: 𝐿𝑅𝑈 _𝑑𝑖𝑐𝑡 [𝑖𝑡𝑒𝑚] ← 𝑖𝑛𝑑𝑒𝑥 ⊲ Updating with the

least recently used index

19: end if
20: end for
21: return 𝑟 𝑓 , 𝑖𝑛𝑓

22: end procedure

keep track of the most recent use of the same addresses. If the item

is not found in the LRU, that means it is a cold miss or the first time

accessing the address. Then we put that address into the LRU with

the index. Otherwise, if it is found on LRU, then we take a hash set

between the current index and the LRU stored index. That filters

out the duplicate references in the middle. We stored the count of

other addresses in a dictionary. That dictionary turns into a reuse

profile. The algorithm 1 shows the process of calculation.

3.7 Dilation Prediction
Up until now, we have the reuse profile for loop bounds 2-2-2, 2-

2-3. From these two reuse profiles, we determine the reuse profile

for larger loop bounds. We have marked the increment in each

individual reuse distance by increasing one k. Similarly, we have

applied the same technique for 2-2-2 to 2-3-2 and observed likewise

for increasing one j. Then, we compare the reuse profile of 2-2-2

and 2-3-3 and mark the change for the increasing of both j and

k. After having the coefficient here, now we apply the following

equation 1 to reach the J and K’s target bounds such as 2-20-10.

𝑅𝑃 = 𝐵22 + 𝐼𝑛𝑐 𝐽 ×𝑈 𝐽 + 𝐼𝑛𝑐𝐾 ×𝑈𝐾 +𝐶𝑜𝑓 𝑓𝐽 𝐾 ×𝑈 𝐽 ×𝑈𝐾 (1)

In this equation, RP represents the frequency of the Reuse Profile;

𝐵22 is for the baseline reuse distance, mainly 2-2-2 is considered as

the baseline reuse profile; 𝐼𝑛𝑐 𝐽 is the frequency increase for each

increment of the loop bound J;𝑈 𝐽 is the distance that J is going up;
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Figure 3: Loop flattening for smaller bound.
Table 1: List of applications used to validate our results.
App Domain Loops and Bounds (outer to inner)
2mm Linear Algebra (LA) 3 nested; 300-200-100

3mm LA 3 nested; 30-40-50

atax LA 2 nested; 150-70

mvt LA 2 nested; 100-200

gemver Basic Linear Algebra Subprograms 2 nested; 400-500

It is also same for the K loop bound in the next term, and 𝐶𝑜𝑓 𝑓𝐽 𝐾
is the impact factor of scaling both J and K bounds together.

By following this rule, we can calculate 2-J’s bound-K’s bound

(such as 2-20-10), and then from there, using the same process, we

can reach the I’s bound (such as 30-20-10) or go more upper one by

one loop.

4 RESULTS
Our investigation of finding a static way to calculate reuse profile

and cache hit rates performs quite similarly compared to the well-

established dynamic reuse profile calculators in terms of hit rates.

We have validated our results using [7]. The same program is tested

in both calculators and using the generated reuse profile, predicted

cache hit rates as well using the same tool. The benchmark appli-

cations are analyzed in both frameworks. We have generated the

cache hit rate from the reuse profile we have got and the results

are shown in the diagrams. In the X axis, 5 different programs are

mentioned and the Y axis represents the cache hit rates in the range

of 0 to 100 scale. On average our tool can hit more than 95% which

is significant in terms of static process.

Cache Reference: To predict the cache hit rate, we have used a

cache where the associativity is 20, 20, and 8 for the first, second,

and third level cache respectively. Also, Cache sizes are 16 MB, 25

MB, and 32 KB. However, the cache line is 64 for all 3.

5 LIMITATIONS
There are a few limitations to this approach. Calculating from

bottom to top works only for a few numbers of nested loops. When

the loop depth increases, the coefficient value does not work as

expected. Therefore, discrepancies might show up in the reuse

profile which could be a potential future work.

Figure 4: Comparison in Hit Rate between the dynamic and
static predictor.

Another issue is this technique also does not have coverage for

the if-else branch inside a loop. It only predicts a bigger loop-bound

reuse profile from smaller cases, however, if any branch condition

appears, predicting the reuse profile statically would be challenging,

because, branches may not follow the same sequence of calculation.

6 CONCLUSION
Application profiling is significant for performance measurement.

Reuse profile and cache hit rates are very important metrics. This

paper has shown a unique technique to calculate reuse profiles by

gathering knowledge from the smaller cases. It is independent in

terms of loop bound and also a faster approach because the full

process follows a static process. As this approach does not require

the collection of dynamic traces, it saves time on the overall cal-

culation process compared to the dynamic reuse profile predictors

who collects the trace. The result shows that our tool almost hits

the cash more than 95% on average, Sometimes it earns more hits

than the dynamic predictor. This technique might be helpful when

time is more important than compromising little accuracy.
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