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ABSTRACT
In recent years, hardware specialization has become the dominant
strategy for accelerating the performance of emerging applications.
However, designing and integrating custom hardware is a com-
plex, time-consuming, and costly process. High-Level Synthesis
(HLS) tools mitigate these issues by designing, prototyping, and
deploying hardware accelerators on reconfigurable devices (e.g.,
FPGAs) attached to the computing systems. The conventional HLS
tools aim at exploiting instruction level parallelism to achieve su-
perior performance and generate accelerators with fine-grained
memory accesses. The limited on-device memory on FPGA neces-
sitates frequent direct access to external memories to satisfy the
data requirements of these applications. Thus, improving memory
bandwidth utilization is challenging for the HLS flows, and requires
rethinking of the accelerators’ memory subsystem. In this paper,
we present a synthesis methodology that seamlessly introduces
custom caches into the HLS-generated designs. The key feature
of our approach is the ability to fine-tune cache parameters spe-
cific to the accelerator. This is crucial since different workloads
exhibit varying spatial and temporal locality, leading to different
performance trade-offs. Our methodology also allows for efficient
design space exploration without requiring user modifications to
the input specification. We demonstrate the practical application
of our methodology by studying the effects of various cache con-
figurations on selected kernels’ performance. Based on our study,
we also present a heuristic that guides users to fine-tune cache
parameters. Our study shows that fine-tuning caches can improve
performance by up to 3.5× with 13% resource overhead, compared
to the conventional non-cached designs.

1 INTRODUCTION
In recent years, machine learning (ML), artificial intelligence (AI),
and big data analytics have become the primary drivers for design-
ing custom accelerators [8]. Applications from these domains com-
bine unique requirements for memory and computation: they pro-
cess exponentially growing amounts of data and employ complex

computational patterns (e.g., dense and sparse matrix multiplica-
tions, graph traversals, etc.) [10]. Hence, designing domain-specific
accelerators for these applications requires optimizing data/mem-
ory access as well as computation.

High-level synthesis (HLS) is an automated design process that
converts specifications described in high-level programming lan-
guages (e.g., C, C++, Python, etc.) into implementations in hardware
description languages (HDLs). The conventional HLS tools, both
commercial (e.g., AMD Xilinx Vitis, Mentor Catapult C) and open-
source (e.g., Bambu), optimize for the computational complexity
of the input specifications and generate accelerators operating on
the finite state machine with datapath (FSMD) model. Thus, for
the HLS-generated accelerators, each load or store memory oper-
ation directly corresponds to a memory transaction, resulting in
fine-grained memory accesses.

Fine-grained memory accesses coupled with limited on-chip
memory results in frequent access to external memories. When
the HLS-generated accelerators are integrated into a system-on-
chip (SoC), accessing external memory, such as dynamic random
access memory (DRAM), has a high latency cost. The accelerator’s
computation is also stalled until the data movement between the on-
chip and external memories is complete, resulting in performance
degradation. Moreover, various computational units often access
external memories through a shared bus, potentially congesting
the interconnect. An expert hardware designer would be required
to architect efficient solutions to mitigate the effects of external
memory latency. However, as the specifications growmore complex,
it is necessary to revamp the HLS methodologies to shorten the
accelerator design cycle time. Next-generation HLS tools need to
generate accelerators with optimized memory subsystems.

Conventional commercial HLS tools provide limited ways to
improve external memory access costs, such as leveraging burst
memory transactions and implementing on-chip burst buffers. How-
ever, these solutions require expert HLS tool users to take advantage
of them by restructuring code or instantiating specific storage struc-
tures. Moreover, these solutions are useful only for a few specific
memory access patterns.
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In this paper, we propose an HLS methodology that can generate
accelerators with integrated caches and burst memory transaction
capabilities. Using caches to reduce memory access latency by
exploiting spatial and temporal locality is a well-studied technique
for general-purpose processors. Our HLS methodology requires
only adding specific pragma directives in the input specification
header without the need to modify the behavioral description. The
HLS process generates highly specialized accelerators that only
implement the behavior specified in the high-level programming
language. Hence, it is critical to provide the ability to quickly explore
cache parameters to adapt the cache to the computational and
memory access patterns of the accelerator and identify the best
trade-offs between performance and resource utilization.

We have integrated this methodology into the open-source HLS
tool Bambu [7]. To the best of our knowledge, Bambu is the only
HLS tool that implements an approach to generate configurable
accelerator caches. We describe howwe implemented the methodol-
ogy in the tool, discuss the supported parameters, and demonstrate
the flexibility of our approach by exploring cache configurations
for accelerators generated by a variety of algorithms with different
computational and memory access patterns.

The paper proceeds as follows. Section 2 provides an overview
of the methodology used by HLS tools to translate high-level de-
scriptions into HDL, focusing on how memory operations are im-
plemented. Section 3 describes both the internal architecture of
the integrated caches and their instantiation within the custom
accelerator. Section 4 describes the evaluation methodology. Sec-
tion 5 presents our heuristic for exploring the design space and the
evaluation of our solution. Section 6 presents our conclusions.

2 HIGH LEVEL SYNTHESIS FLOW
High-Level Synthesis (HLS) involves generating the hardware de-
scription of a behavioral specification, typically written in common
programming languages such as C and C++. The HLS process is
organized into a sequence of interrelated steps, akin to a software
compilation toolchain. The initial step in the pipeline lowers the
input specification to a set of internal representations, capturing var-
ious characteristics such as control and data dependencies among
operations. This process often leverages software compilers and
applies target-agnostic optimizations such as constant propagation
and common subexpression elimination.

The subsequent steps encompass the core HLS tasks: schedul-
ing, resource allocation, and resource binding. These tasks can be
performed using various algorithms and in different sequences.
Scheduling assigns each operation to a specific control step. The
scheduled specification is typically represented as a State Transi-
tion Graph, which is later translated into a Finite State Machine
controller in the generated design. Resource allocation identifies
the registers and functional units required for each operation and
determines their quantities. Resource binding associates operations
with specific instances of resources, which may be shared across
multiple operations. Finally, interconnection binding connects the
various resources to each other and to memory interfaces.

At this stage, the circuit is generally described using a graph-
based internal representation. If so, the final step, netlist generation,
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Figure 1: Example State Transition Graph of the specification
in Listing 1

translates the graph representation into a hardware description
language (HDL) file.
1 vo id foo ( u i n t 6 4 _ t ∗ a , u i n t 6 4 _ t ∗ b ,
2 u i n t 6 4 _ t ∗ c , u i n t 6 4 _ t index ) {
3 c [ index ] = a [ index ] + b [ index ] ;
4 }

Listing 1: Simple example specification

Listing 1 provides a simple example specification in C, while
Figure 1 illustrates the corresponding State Transition Graph (STG).
Load and store operations access external memory with latencies
unknown at compile time. Consequently, once these operations are
issued, execution stalls until a done signal on the memory interface
is asserted. This results in the introduction of one idle state per
memory operation (S1, S3, and S5). The depicted STG represents
just one possible scheduling. Alternative architectural configura-
tions, such as an accelerator with access to multiple memory ports,
might generate different graphs with fewer idle states. However,
the presence of idle states can never be entirely eliminated.

3 MEMORY CONTROLLER ARCHITECTURE
While the general methodology is not dependent on a specific
protocol for the memory interface, our work focuses on interfaces
exchanging data through an AXI [3] bus. This protocol, including
both its full version and its subset AXI-Lite, is well-known among
designers and widely utilized in commercial products (e.g., Xilinx
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devices) to enable communication across system components for
both control and data movement The AXI protocol supports burst
transfers, which allow for transferring large blocks of contiguous
memory in a single transaction. This capability is ideal for use with
caches, enabling the reading or writing of entire cache lines at once.

HLS tools, such as Bambu, support automatic data exchange
handling via AXI through the use of pragma directives. These di-
rectives provide the tool with essential information that cannot
be inferred, such as the protocol for data access, the number of
memory ports available to accelerators, and the specific ports each
function parameter should use for data access.

Our solution leverages the existing pragma support in Bambu to
identify different memory channels available to the accelerator and
introduces a new set of pragmas used to introduce caches in the
design according to the specified configuration.

It is important to note that both sets of pragma directives do not
require any code restructuring from the user. Unlike the solution
proposed by Xilinx tools, our approach allows any functional ap-
plication, regardless of its memory access patterns, to incorporate
caches without modification. Additionally, pragma directives only
need to be added at the top function level, not at the level of individ-
ual memory accesses. This simplifies the synthesis process, as users
do not need to search through the code to identify and optimize
access patterns, nor do they need to ensure the code meets specific
constraints.

In our experiments, we evaluate two distinct memory controller
architectures, differing only in the presence or absence of the cache
pragma in the high-level specification: the Standard AXI memory
interface and the AXI Cache memory interface.

3.1 Standard AXI
The Standard AXI architecture is the default memory controller
for AXI memory interfaces in Bambu. This controller is straight-
forward to instantiate, requiring only a single pragma directive for
each pointer in the top function signature to access data through an
AXI bus. As shown in Listing 2, a, b, and c correspond to the param-
eters of the mmult function, and the values assigned to the bundle
represent the names of the AXI ports mapped to these parameters.
Multiple parameters can share the same AXI port by using the
same bundle name, or they can be separated by specifying differ-
ent names. In this example, two separate memory controllers are
generated: the first, called gmem0, handles memory accesses related
to a, while the second, called gmem1, manages requests for the data
of both b and c.
1 #pragma HLS_ i n t e r f a c e a m_axi d i r e c t bund le=gmem0
2 #pragma HLS_ i n t e r f a c e b m_axi d i r e c t bund le=gmem1
3 #pragma HLS_ i n t e r f a c e c m_axi d i r e c t bund le=gmem1
4

5 vo id mmult ( i n t ∗ a , i n t ∗ b , i n t ∗ c )

Listing 2: Standard AXI pragmas example

The controller operates as a simple finite state machine (FSM), as
depicted in Figure 2. It remains in the IDLE state until the accelerator
requests data access. Upon activation, the controller places the
transaction data in the appropriate AXI channels and transitions to
either theW_READ orW_WRITE state. In these states, the controller
waits for the AXI handshakes before deasserting the signals on the

W READ WWRITE

IDLE

AXI bvalidAXI rlast

!start

start && r start && w

!AXI rlast !AXI bvalid

Figure 2: Standard AXI Finite State Machine

relevant AXI channels and then waits for the response from the
AXI slave device. This necessitates stalling in these states until the
entire transaction is complete before returning to the IDLE state.

While functional, this memory controller has significant draw-
backs. It processes requests sequentially, meaning each memory
access generates a new AXI transaction and incurs the full latency
of external memory access for each data transfer. Additionally, the
controller cannot handle multiple requests simultaneously (e.g.,
concurrent read and write transactions) and can only accept new
requests once the previous one has been fully processed by the
slave device.

3.2 AXI Caches
Our AXI caches are built upon the Standard AXI controller archi-
tecture. When a user decides to instantiate a cache, the HLS tool
generates the standard controller module with the same interface.
However, its functionality changes significantly. Instead of handling
the memory interface directly, it now instantiates and controls a
customized cache module, effectively transferring bus control to
the cache’s internal logic.

To maintain transparency, caches are integrated within the mem-
ory controller module rather than as separate entities. This ensures
that the rest of the accelerator operates as if memory requests are
being served individually, regardless of the cache’s presence. How-
ever, transparency cannot be preserved at the end of computation
due to the nature of cache operations. Caches reduce stalls by min-
imizing the number of memory transactions. For instance, when
writing to external memory, the cache may store data internally and
signal readiness for new operations without waiting for the data to
be fully transferred. To ensure data consistency, a flush operation
is added at the end of execution, compelling caches to complete
all pending write transactions before the accelerator signals the
end of the computation. Since the Standard AXI controller does
not include a dedicated flush port, this operation is triggered by
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Figure 3: Proposed cache architecture

encoding the end-of-computation as a 0-bit write request to any
memory address.

Adding caches offers several advantages over the Standard AXI
controller. Caches exploit spatial and temporal locality by storing
parts of the dataset, reducing the number of outgoing transactions
and total latency when data is reused. Prefetching further reduces
average latency by transferring longer sequences, such as cache
lines, instead of single elements. Additionally, caches can accept
new transactions before completing previous ones and handle mul-
tiple active transactions on the AXI channels simultaneously. How-
ever, caches also have drawbacks. They require additional logic
to manage the internal state and on-chip memory to store data.
The need for flushing introduces further complexity. Caches do not
guarantee improved performance; applications with poor locality
may experience delays due to rarely used prefetched data. Consis-
tency issues may arise as cached data may not be coherent with the
external memory state. In this work, we assume the accelerator has
exclusive write access to the data it operates on, mitigating some
consistency concerns.

3.2.1 AXI Caches architecture. The architecture of the integrated
AXI caches are inspired by IObundle (IOb) caches [9]. However,
significant enhancements have been made to improve latency hid-
ing capabilities and to incorporate essential functionalities, such
as flushing, which are critical for HLS-generated accelerators. Cus-
tomizability is paramount for these caches. HLS tools can generate
accelerators with diverse input/output sizes and memory access
patterns. Instantiating a single, non-configurable, cache component
would be suboptimal, due to varying size requirements and memory
access patterns depending on the generated accelerator. Therefore,
Bambu supports caches that are both resizable and adaptable in

their internal behavior based on user specifications. The architec-
ture is divided into three main modules: frontend, cache memory,
and backend.

• Frontend: This module handles requests from the cache
controller through a simple valid/ready interface. The valid
signal indicates a memory access request from the con-
troller, while the ready signal indicates the completion of
the operation by the cache. The frontend also registers in-
put signals necessary for other cache modules and provides
output data to the cache controller.

• Cache memory: This module is the core of the cache,
maintaining the internal state, data, and cache line tags in
RAMs with a single-cycle access latency. It uses a register
file (one bit for each cache line) to track the validity of
cache contents. For write-back caches, a similar register
file tracks modified lines that need to be written back to
memory upon eviction. The memory module can identify
cache hits, which are served in the next clock cycle, or
cache misses, which require additional memory operations.
For non-direct-mapped caches, this module includes a re-
placement policy controller that selects the cache line to
use for incoming data. The memory module also includes
a write buffer to store the address and data of write trans-
actions. This buffer hides write latency by allowing the
cache to signal readiness upon transaction insertion, rather
than waiting for AXI transaction completion. Our cache
design improves upon the original IOb design by using the
write buffer with write-back caches. Using the write buffer
during memory write transactions prevents stalls when
multiple dirty lines are replaced in quick succession. The
cache memory module also includes logic for cache flush-
ing, ensuring data synchronization with external memory.
For write-through caches, this involves emptying the write
buffer. For write-back caches, the dirty bit register file is
checked, and dirty lines are moved into the write buffer
and written back to the memory. Once all the dirty bits are
cleared, the module waits until the write buffer is empty to
signal the completion of the flush operation.

• Backend: This module controls the AXI signals and consists
of independent controllers for read and write operations,
which can operate simultaneously. The read controller is
activated on a read miss to fetch the entire missing cache
line. The write controller handles every write access for
write-through caches and manages dirty line evictions for
write-back caches. With respect to the conventional IOb
caches, our design supports outstanding write transactions,
allowing the write controller to initiate new transactions
before receiving responses to previous ones, thus reducing
channel latency for frequent writes.

Lastly, our caches do not include a coherency mechanism. Users
must ensure exclusive write access to each cache’s memory region
when annotating their code.

3.2.2 AXI Cache instantiation. As detailed in Section 3.2, AXI caches
are integrated into the Standard AXI module. Consequently, cache
instantiation requires two distinct sets of pragma directives: the
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Figure 4: Cache instantiation example

Standard AXI directives and the AXI Cache directives, as illus-
trated in Listing 3. During HDL generation, the HLS tool checks
each memory controller for cache configuration information. If no
cache information is found, a Standard AXI controller is generated
and connected to the design. Conversely, if cache information is
provided, an AXI Cache controller is instantiated, and the cache
configuration is customized according to the pragma directives.

1 #pragma HLS_ i n t e r f a c e a m_axi d i r e c t bund le=gmem0
2 #pragma HLS_ i n t e r f a c e b m_axi d i r e c t bund le=gmem1
3 #pragma HLS_ i n t e r f a c e c m_axi d i r e c t bund le=gmem2
4

5 #pragma HLS_cache bundle=gmem0 way_s i ze =8 l i n e _ s i z e =32
6 #pragma HLS_cache bundle=gmem1 way_s i ze =32 l i n e _ s i z e =8

n_ways=2 bu s _ s i z e =64 b u f f e r _ s i z e =4 r e p _ p o l i c y = l r u
w r i t e _ p o l i c y =wb

7

8 vo id mmult ( i n t ∗ a , i n t ∗ b , i n t ∗ c )

Listing 3: AXI Caches pragmas example

It is important to note that our caches are exclusively bound to
the memory interface. This allows for Design Space Exploration
(DSE) by enabling users to selectively include caches only for mem-
ory ports that would benefit from them while omitting them where
they would be ineffective within the same design. Additionally,
caches on different memory channels are fully independent, al-
lowing each memory channel to be customized without affecting
others. This modular approach simplifies finding an optimal con-
figuration, as the configuration only needs to be optimal for the
memory locations accessed through that specific port.

pragma directives for AXI Caches consist of a preamble identify-
ing the directive and a list of parameter assignments. All parameters,
except for the bundle parameter, are used directly to customize the
cache configuration. The directive requires the user to assign values
to three mandatory parameters, while the remaining parameters are
optional. In the provided example, the first cache pragma specifies
only the mandatory parameters, whereas the second one includes
all possible customization options. Detailed descriptions, possible
values, and default values (for optional parameters) of the cache
configuration parameters are presented in Table 1. The memory
controller architecture inferred by these directives is depicted in
Figure 4.

4 BENCHMARKS AND EVALUATION METRICS
To develop a heuristic for guiding designers toward optimal cache
configurations, we selected relevant performance metrics and three
benchmarks: Fast Fourier Transform (FFT) [1], GramSchmidt [5],
and DigitRecognition [2]. Using Bambu, our HLS tools supporting
caches, we generated multiple HDL versions for each benchmark:
one without caches (serving as a baseline) and a set of 32 prede-
termined cache configurations. These configurations were derived
by permutating five of the seven cache parameters, each with two
possible values (small and large). The two unexplored cache param-
eters — write policy and replacement policy — were left at their
default values, as they are expected to have minimal performance
impact in a single-level cache architecture. We synthesized these
configurations targeting a VCK5000 board which hosts a Versal AI
Core VC1902 device. We simulated these configurations using the
testbench automatically generated by Bambu HLS, employing real-
istic memory access latency values, estimated between 85 and 90 ns
based on the AXI data bus size, for our target VCK5000 board using
the uBench [4] benchmark. Performance metrics were extracted
by analyzing Value Change Dump (VCD) files generated during
simulations, identifying events such as AXI channel handshakes
and memory request start/end times. From these results, we formu-
lated a heuristic to expedite design space exploration and achieve
near-optimal solutions Additionally, we synthesized and executed
another benchmark, Resnet-18 [6], on the same target board. For
Resnet-18, instead of analyzing VCD files, we instrumented the gen-
erated code and added memory-mapped registers to collect metrics
and validate our heuristic. By iteratively synthesizing, executing,
and extracting metrics following our heuristic, we achieved a 3.5×
speedup with a 13% resource overhead in three tuning steps.

4.1 Benchmarks
4.1.1 FFT. The Fast Fourier Transform (FFT) algorithm converts
a sequence of inputs into their frequency domain representation.
It has a high density of load and store operations, with a regular
but progressively increasing access step and minimal temporal
locality. Initially, caches provide a performance advantage over the
baseline due to the regular access pattern. However, as the access
step increases, the advantage diminishes because more elements
are prefetched on a cache miss and remain unaccessed.

4.1.2 GramSchmidt. The GramSchmidt algorithm decomposes an
input matrix into a unitary matrix and an upper triangular matrix.
It is a memory-bound algorithm with a balanced mix of load and
store operations, exhibiting a regular and stable access pattern with
limited temporal locality. These characteristics make it well-suited
for cache utilization.

4.1.3 DigitRec. DigitRec implements the k-Nearest Neighbor al-
gorithm for digit recognition. It involves a minimal number of
store operations compared to a large number of loads. The load
access pattern is sequential with no temporal locality, making cache
prefetching particularly beneficial in this scenario.

4.1.4 Resnet-18. Resnet-18 is an 18-layer convolutional neural net-
work, comprising convolutions, batch normalizations, ReLUs, and
vector additions. While some layers follow a sequential access pat-
tern, the bulk of the computation occurs in the convolution layers.
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Table 1: Cache Parameters

Parameter Description Possible values Default
bundle Name of the AXI port this cache is attached to. Bundle name must match None

one of the ports specified with
the Standard AXI pragma

n_ways The number of positions a specific cache line can be Powers of 2 1 (direct-mapped)
stored in the internal memory. Reduces miss rate
at the cost of resource utilization.

way_size The number of cache lines present in each cache way. Powers of 2 None
Reduces the miss rate at the cost of more resources.

line_size The length of each cache line, i.e. how much data is read Powers of 2 None
on a cache miss. Not expressed in bits, but as the number of
elements that the line must contain.

bus_size The size, in bits, of the AXI data bus. Increasing the bus size Powers of 2, from 32 to 1024 Width of data-type
reduces the AXI burst length.

buffer_size The maximum number of pending write transactions that Powers of 2 2
can be stored in the write buffer. Reduces the risk of
stalling on write requests at the cost of more resources.

rep_policy The replacement policy used for set-associative caches. lru: Least Recently Used lru
Changing policy might reduce or increase miss rate. tree: Tree-based LRU approximation

write_policy The policy used by to handle write requests. wt: Write-through no-allocate wt
wb: Write-back allocate

These layers exhibit a balanced mix of load and store operations,
with the input data accessed through a sliding window with good
temporal locality, and the layer weights accessed sequentially. Both
access patterns are expected to perform well with our caches.

4.2 Metrics
4.2.1 AXI handshakes. AXI handshakes estimate the traffic gen-
erated on the AXI bus by the accelerator. Ideally, a cache reduces
the generated traffic, as cache hits can be served locally without
accessing the main memory.

4.2.2 Cache hits and misses. The cache hit-to-miss ratio is crucial
in assessing the effectiveness of caches. A high ratio indicates that
most requests are served immediately, avoiding the full memory
access latency. Conversely, a low ratio means the cache cannot serve
many requests in a single clock cycle, leading to frequent stalls. A
sufficiently low ratio can even degrade performance compared to
the baseline. It is important to note that an access is considered
a cache miss if it cannot be served immediately, regardless of the
memory’s internal state. This includes situations where a write
request cannot be processed because the write buffer is full.

4.2.3 Write buffer full and stall clock cycles. These metrics provide
insight into the performance of write transactions. Caches must
stall write transactions when the write buffer is full. Estimating the
time spent in this condition is useful for designers. Both the number
of clock cycles lost due to a full write buffer and the number of
clock cycles the buffer is full (even if it does not cause a stall) are
included. Unlike in our experimental setup, the access latency on
real hardware is not fixed. Thus, a full buffer might be emptied
quickly enough to avoid a stall in simulation, but not in actual
hardware.

4.2.4 Average memory access duration. This metric estimates the
average time, in clock cycles, to perform a memory request. Ideally,
caches should reduce this value to as close to 1 as possible.

4.2.5 Execution time and clock cycles. These metrics measure the
overall effectiveness of the caches.

5 EXPERIMENTAL RESULTS
As outlined in Section 4, we conducted an exhaustive exploration of
the design space for the selected benchmarks, evaluating 32 differ-
ent cache configurations for each. However, many configurations
resulted in only marginal variations in performance metrics such as
overall latency and cache hit/miss ratios. Therefore, our subsequent
discussion focuses on analyzing the pivotal points in the design
space.

First, we describe a straightforward approach to infer a heuristic
for narrowing the design space. Then, for each benchmark, we
discuss the simulation results of the most relevant design points.
Finally, we apply this heuristic search to the Resnet benchmark,
analyzing performance and synthesis results on FPGA.

5.1 Heuristic
Based on our observations across numerous design points, we found
that several cache configurations yield equivalent optimal results.
While our approach greatly facilitates design space exploration
without requiring modifications to the behavioral specification, it
remains desirable to identify a configuration close to the saturation
point with the minimal number of explored design points.
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The complete synthesis of each design point, from specification
to the device can require several hours. When additional config-
uration aspects (such as different HLS step algorithms) and opti-
mization objectives are considered, the design space can quickly
become prohibitive to explore.

To address this, we propose a heuristic to iteratively narrow
and explore the design space. The most critical factor appears to
be the cache size. Thus, we recommend starting with the smallest
cache configuration and evaluating performance improvements
over the baseline. If performance degrades, caches may not be suit-
able. Otherwise, incrementally increase the cache size and observe
performance gains. The improvement must be substantial enough
to justify the additional resource usage. Repeat this process until
the performance gain becomes marginal. At that point, revert to
the previous cache size and explore configurations with that size.

If the stalls caused by a full write buffer, or the number of clock
cycles with a full buffer, are significant compared to the overall
execution time, try a configuration with a larger write buffer to
check for improvements. Finally, evaluate whether increasing the
size of the AXI data bus could speed up memory transfers or reduce
bus traffic.

The exploration steps for each of the benchmarks are detailed
in Tables 2, 3, 4, and 5. For brevity, only the steps relevant to our
heuristic are included, even for benchmarks where an exhaustive
search was performed.

5.2 FFT
Following the heuristic, we describe the iteration process in Ta-
ble 2. In the first step, adding the smallest cache configuration to
FFT yields mixed results. The average number of clock cycles per
memory access decreases, and execution time is reduced. However,
the number of AXI handshakes generated by the accelerator nearly
triples, which could degrade system performance when accessing
external memory through a common AXI interconnect.

In the second step, we increase the cache size. This results in
significant performance improvements, achieving a 4x speedup
over the baseline. Additionally, the number of AXI handshakes
is roughly halved compared to the baseline, indicating potential
benefits for the entire AXI interconnect.

In the third step, further increasing the cache size does not yield
significant improvements. While the average memory access time
and clock cycle count decrease, the gains do not justify doubling
the cache size. This performance saturation is expected since the
dataset size is only 8KB. Therefore, we revert to the previous cache
size and explore other parameters.

Notably, the large number of stalls due to a full write buffer
prompts us to increase its size in the fourth step. This change elimi-
nates buffer-related stalls and slightly reduces the clock cycle count.
Despite the minimal impact on total execution time, we accept
this change as it significantly improves write buffer performance
without requiring substantial additional logic.

Finally, in the fifth step, we attempt to minimize AXI handshakes
by increasing the AXI data bus size. However, the number of hand-
shakes remains similar to the previous iteration. Consequently, we
select the configuration from step four.

This configuration closely matches the performance of the best
configuration across the entire design space, with only a 1% perfor-
mance gap and a marginal reduction in AXI traffic, while avoiding
the need to double the cache size.

5.3 GramSchmidt
Table 3 outlines the heuristic steps for GramSchmidt. As anticipated,
the initial step using the smallest cache configuration results in a
dramatic performance improvement. Execution time is more than
halved, and the average memory access time is reduced to one-
third of the baseline, with a favorable cache hit-to-miss ratio. This
improvement comes at the cost of a slightly increased number of
AXI handshakes.

Encouraged by this significant performance boost, we increase
the cache size in the second step. This yields an additional perfor-
mance gain, with an almost 1.7× speedup and near-ideal average
access time. Additionally, the number of AXI handshakes is sub-
stantially reduced, generating less traffic on the interconnect.

In the third step, we further increase the cache size, but no notice-
able improvements in the metrics are observed. This is expected, as
the entire dataset already fits into the previous cache size. Reverting
to the cache size used in step two, we determine that exploring the
effect of the write buffer size is unnecessary. The accelerator never
stalls due to a full buffer, and the number of cycles with a full buffer
is negligible compared to the overall number of clock cycles.

In the fourth and final step, we increase the size of the AXI data
bus. However, this change does not yield significant improvements
in any of the considered metrics. Consequently, we select the config-
uration from step two. This configuration compares favorably with
the most performant one, offering a similar performance (around
1% slower) and reduction in AXI handshakes, without the need to
double the cache size.

5.4 DigitRec
In Table 4, we outline the heuristic steps for DigitRec. As anticipated,
introducing a small cache in the first step significantly enhances
the performance of this accelerator. All metrics show substantial
improvements over the baseline, highlighted by a favorable hit-to-
miss ratio that results in a 3.1× speedup and a 2.5× reduction in
AXI bus traffic.

Upon increasing the cache size in the second step, there is further
improvement in execution time and traffic reduction. However,
we find the gains insufficient to justify doubling the cache size.
Returning to the previous cache size and noting that the write
buffer never reaches full capacity, we decided against exploring
different write buffer sizes as it would not yield improvements.

Next, we assess the impact of increasing the size of the AXI data
bus. Given the accelerator’s heavy reliance on cache prefetching
for performance gains, this configuration proves effective, deliver-
ing comparable execution time improvements as the cache size in-
creases while significantly reducing AXI handshakes. Consequently,
this configuration from step three is preferred over the one from
step two.

With no further parameters to adjust without increasing the
cache size, our heuristic settles on the step three configuration.
Compared to the configuration with the best overall performance,
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Table 2: FFT - 1024 × 2 × 4 bytes metrics

Step Exec. Time (ms) Cache Size (KB) Ways Line size Bus size Buffer size Way size AXI hs hit/miss buf full/stall mem cc cc
0 7.2 - - - - - - 132802 - - 18.6 1.43M
1 6.0 4 1 16 64 2 64 324864 26064/29104 30400/9424 16.5 1.20M
2 1.8 16 4 16 64 2 64 68544 53863/1305 171877/21907 1.25 0.37M
3 1.8 32 1 128 64 2 64 68432 53863/1305 172950/22339 1.21 0.36M
4 1.8 16 4 16 64 16 64 68544 55040/128 0/0 1.07 0.36M
5 1.8 16 4 16 256 16 64 67776 55040/128 0/0 1.05 0.35M

best 1.8 32 1 128 256 16 64 67664 55152/16 0/0 1.01 0.35M

Table 3: GramSchmidt - 1024 × 3 × 4 bytes metrics

Step Exec. Time (ms) Cache Size (KB) Ways Line size Bus size Buffer size Way size AXI hs hit/miss buf full/stall mem cc cc
0 14.5 - - - - - - 263696 - - 17.7 2.91M
1 6.4 4 1 16 64 2 64 265902 96754/18446 7936/0 5.5 1.28M
2 3.8 16 4 16 64 2 64 101472 115024/176 7936/0 1.03 0.76M
3 3.8 32 1 128 64 2 64 101448 115176/24 7936/0 1.02 0.76M
4 3.8 16 4 16 256 2 64 100416 115024/176 7936/0 1.03 0.76M

best 3.8 32 1 128 256 16 64 100296 115176/24 0/0 1.01 0.76M

Table 4: DigitRec - ∼72000 × 8 bytes metrics

Step Exec. Time (ms) Cache Size (KB) Ways Line size Bus size Buffer size Way size AXI hs hit/miss buf full/stall mem cc cc
0 145 - - - - - - 2304024 - - 18.0 29.1M
1 45.9 8 1 16 64 2 64 907768 1098646/53362 0/0 2.71 9.17M
2 42.7 64 4 16 64 2 64 612058 1116006/36002 0/0 2.16 8.53M
3 42.7 8 1 16 256 2 64 266834 1098646/53362 0/0 2.16 8.54M

best 36.2 2048 4 128 256 2 512 18603 1151445/563 0/0 1.03 7.23M

our selected configuration is approximately 1.3× slower and gener-
ates 49× more AXI handshakes. While the reduction in bus traffic
is substantial, the selected configuration is 256 times larger than
the one recommended by our heuristic. Even considering the per-
formance improvement, the significant increase in size is difficult
to justify.

5.5 Resnet-18
Table 5 presents the evaluation of our approach on Resnet-18, de-
ployed on a VCK5000 board with a target frequency of 200MHz. In
our first exploration step, introducing relatively small cache results
in a notable 2.7× speedup and reduces AXI handshakes without
significantly impacting resource utilization.

In the second step, we further increase the cache size but observe
quite similar quality of results, with a performance improvement
fully compensated by the slightly higher resource requirements.
Therefore, we revert to a 4kB cache size and explore other configu-
rations.

Given that the number of cycles with a full write buffer isminimal
compared to the overall execution clock cycles, we opt against
exploring larger buffer sizes. As a third and final step, we instead
opt to increase the size of the AXI data buffer. This adjustment
yields improved overall performance and further reduces traffic,
making this the optimal configuration according to our heuristic.

Ultimately, we achieve a 3.5× speedup over the cacheless baseline
while only requiring approximately 10% more registers and 13%
more LUTs.

6 CONCLUSIONS
High-level synthesis (HLS) techniques have proven to be invaluable
for accelerating the prototyping of custom accelerators in recent
years. However, as modern applications handle increasingly large
datasets requiring efficient utilization of external memory band-
width, there remain significant opportunities for enhancement to
achieve optimal performance.

In this paper, we present a methodology for integrating tunable
caches into HLS-generated designs. Our approach leverages pragma
directives to specify cache configurations without altering the input
behavioral specification, thereby streamlining design space explo-
ration. We demonstrate the practicality and effectiveness of our
method by implementing it within a state-of-the-art open-source
HLS tool. Through exhaustive exploration of multiple cache con-
figurations across selected benchmarks, we propose a heuristic to
efficiently navigate the design space for future optimizations.

Applying our heuristic, we optimized the Resnet-18 benchmark
on an FPGA device in just a few iterations. Our approach achieved a
notable 3.5× speedup compared to a baseline design without caches,
with minimal area overhead and a short design cycle, requiring the
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Table 5: Resnet-18 -metrics

Step Exec. Time (s) Cache Size (KB) Ways Line size Bus size Buffer size Way size AXI hs hit/miss buf full/stall mem cc cc Registers (K) LUTs (K)
0 2543 - - - - - - 82B - - 21.7 1414B 178 215
1 951 4 1 16 64 2 64 42B 14.9/3.0 B 31/12 M 5.9 190B 178 219
2 925 16 4 16 64 2 64 41B 15.1/2.8 B 31/12 M 5.9 190B 180 223
3 720 4 1 16 256 2 64 35B 16.8/1.1 B 31/12 M 3.3 144B 195 244

exploration of only three points in the design space. This under-
scores the efficacy of using a parametric cache solution inside an
HLS tool to perform design space exploration.
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