
Performance Study of CXL Memory Topology
Jianbo Wu†, Jie Liu†, Gokcen Kestor*, Roberto Gioiosa*,

Dong Li†, and Andres Marquez*
{jwu323,jliu279,dli35}@ucmerced.edu,{gokcen.kestor,roberto.gioiosa,andres.marquez}@pnnl.gov

*Pacific Northwest National Laboratory, Richland, Washington, USA
†University of California, Merced, Merced, California, USA

ABSTRACT
This paper presents a comprehensive evaluation of the performance
impact of various Compute Express Link (CXL) memory topologies,
with a particular emphasis on CXL switches, in the context of High-
Performance Computing (HPC) and Large Language Model (LLM)
inference workloads. Our study unveils significant performance
variations across different topologies, demonstrating that certain
configurations yield superior performance for specific workloads.
These findings underscore the critical importance of tailored topol-
ogy selection in optimizing system performance. Additionally, we
address the inherent challenges associated with integrating CXL
switches, including overhead considerations and routing complex-
ities. Our research highlights the necessity for thorough evalua-
tion methodologies to fully leverage CXL technology’s potential
in contemporary computing environments. These insights provide
valuable guidance for system architects and data center operators
in designing and optimizing CXL-based infrastructures for diverse
workload requirements.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; Interconnection architectures; •Computingmethod-
ologies → Simulation evaluation.

KEYWORDS
CXL.mem and CXL switch, CXL.mem topologies, CXL.mem Emu-
lation

1 INTRODUCTION
The exponential growth of data and the increasing complexity
of applications, from traditional High-Performance Computing
(HPC) [5, 22] to rising Large Language Model (LLM) [13, 21], in
modern computing environments have driven the need for efficient
and highly scalable memory architectures. Traditional memory ar-
chitectures [15] often struggle to keep up with the demands for
higher bandwidth and lower latency, leading to bottlenecks that
hinder overall system performance.

Compute Express Link (CXL) [9, 14, 16] has emerged as a piv-
otal interconnect technology designed to address these challenges
by providing high-bandwidth, low-latency connections between
processors and memory devices. CXL enables a more flexible and
dynamic allocation of memory resources, making it an attractive
solution for heterogeneous computing environments where var-
ious types of processors, such as CPUs, GPUs, and FPGAs, need
to share and access memory efficiently. The CXL standard [14] in-
cludes three main protocols: CXL.io, CXL.cache, and CXL.memory

(also known as CXL.mem), dynamically multiplexed on PCIe phys-
ical layer, which together support coherent memory sharing and
efficient data transfer between connected devices.

Despite the promise of CXL, there are significant challenges in
optimizing its implementation. Traditional memory topologies can
lead to suboptimal resource utilization e.g. memory stranding [8]
and scalability issues. For instance, direct-attached memory config-
urations [9] may not fully leverage the capabilities of CXL, resulting
in inefficient memory usage and higher latency. Moreover, existing
CXL implementations [5, 16] often lack the ability to effectively
balance the load across multiple memory devices, further limiting
performance improvements.

CXL switches [4] have been proposed as a solution to address
these limitations. CXL switches facilitate the connection of multiple
memory devices to multiple hosts, thereby enhancing overall mem-
ory bandwidth and reducing latency. By enabling a more distributed
and balanced memory architecture, CXL switches can potentially
overcome the scalability and resource utilization issues inherent in
traditional memory configurations [9, 16].

Challenges. However, the implementation of CXL switches
introduces its own set of challenges. Designing and integrating
CXL switches into existing systems requires careful consideration
of compatibility and performance optimization. The overhead [4]
associated with switch management and the complexity of routing
memory requests through the switch can also impact overall system
performance. Furthermore, the effectiveness of CXL switches in
different computing scenarios needs to be thoroughly evaluated to
ensure they provide the expected benefits [9].

These challenges underscore the need for a comprehensive eval-
uation of CXL memory topologies, particularly CXL switches, to
understand their performance implications fully. Addressing these
challenges is critical to unlocking the full potential of CXL technol-
ogy in modern computing environments.

Solutions. In this paper, we conduct a detailed performance
study of various CXL memory topologies, with a specific focus on
CXL switches. Our study aims to evaluate the performance benefits
and trade-offs associated with using CXL switches in different
computing scenarios. By analyzing key performancemetrics such as
runtime, we provide insights into the effectiveness of CXL switches
in improving system performance.

We summarize the major contributions as follows.

• We reveal performance of different CXLmemory topologies
in HPC and LLM inference, guiding the selection of memory
topology.

• We verify the simulation results with real CXL devices.
• We undertake a comprehensive cost-benefit analysis and

develop a latency-based cost model to evaluate how CXL



Jianbo Wu† , Jie Liu† , Gokcen Kestor* , Roberto Gioiosa* ,
Dong Li† , and Andres Marquez*

memory could substantially reduce real-world applications’
TCO (Total Cost of Ownership).

2 BACKGROUND
Era of Data-intensive Applications. HPC and LLM represent
two critical perspectives that necessitate advancements in mem-
ory and switch technologies like CXL. In HPC, the exponential
growth of data and computational demands requires ultra-fast, low-
latency memory solutions to efficiently process and analyze vast
datasets, thereby enhancing overall system performance and scala-
bility [5, 20]. On the other hand, LLMs like LLaMA [10, 18, 19] and
Mistral [7], with their billion-level model weights and extensive
key-value caches (to store context information within sentences),
demand high-bandwidth memory access to manage and retrieve
massive amounts of data swiftly, ensuring smooth training and in-
ference processes [3]. The integration of CXL memory and switches
offers promising solutions to these challenges, providing a unified,
high-speed interconnect that significantly improves data through-
put and reduces latency across diverse computational workloads.

CXL.mem protocol. CXL is an emerging interconnect standard
designed to enhance communication between CPUs, accelerators,
and memory, providing high-speed, low-latency connections to
improve overall system performance. The CXL.mem protocol, a cru-
cial component of this standard, facilitates memory expansion and
sharing, allowing for more flexible and efficient use of memory
resources. This is particularly beneficial in data-intensive applica-
tions, where the demand for memory bandwidth and capacity is
constantly increasing. By enabling direct memory access by acceler-
ators and other devices, CXL.mem reduces bottlenecks and enhances
the system’s ability to handle large datasets.

CXL switches further augment the capabilities of the CXL
ecosystem. CXL switches [4] allow multiple CXL devices to con-
nect to a single processor, significantly increasing the scalability
and flexibility of the system architecture. With CXL switches, it
is possible to dynamically allocate resources, optimize workload
distribution, and improve resource utilization across diverse com-
puting environments. This flexibility is essential for modern data
centers and high-performance computing systems, where efficient
resource management directly translates to improved performance
and cost-effectiveness. Together, CXL.mem and CXL switches rep-
resent a transformative advancement in interconnect technology,
paving the way for next-generation computing infrastructures.

CXL.mem Emulator. The recent advancements in memory dis-
aggregation have introduced the CXL.mem standard, which allows
for efficient shared memory pools across servers using a load/store
interface. As commercial CXL.mem devices are yet to be released,
Yang et al. [23] have addressed the research gap with the develop-
ment of CXLMemSim, a lightweight simulation tool that emulates
CXL.mem’s performance characteristics. CXLMemSim simulates the
perspective of the CPU by incorporating the target latency, taking
into account the Reorder Buffer (ROB) and various cache line states.
This simulation assesses the impact of these factors on application-
level performance. CXLMemSim enables the profiling of memory
access patterns and the insertion of realistic latency and bandwidth
delays within unmodified applications. This tool facilitates the eval-
uation of diverse CXL.mem topologies and memory management

techniques, providing valuable insights into the performance impli-
cations of this emerging technology. With a modest performance
overhead, CXLMemSim offers a critical resource for researchers
and system architects to optimize memory-centric applications in
anticipation of the widespread adoption of CXL.mem in data centers.

3 ANALYSIS
3.1 Setup
Our hardware details are shown in Table 1.We useCXLMemSim [23]
emulator (allocate local memory firstly, then interleavely allocate
the remote memory within the topology according to the inverse
proportion of each remote memory device’s latency while memory
access sequentially) with NPB-OMP [11] benchmark (detailed in
Table 2) to evaluate performance of different CXL topologies in
HPC and IPEX-LLM [1] (Intel LLM library, which accelerates local
LLM inference on Intel CPU) to evaluate performance of different
CXL topologies in LLM inference using Mistral-7B [7] with 256
max tokens to generate for 5 times (stable execution time of each
iteration). Meanwhile, we increase number of OpenMP threads (x
axis) and use numactl [2] to bind application process to a specific
NUMA node in order to observe changes in performance.

We have designed four different topologies: (1) CXL direct-attach-
ed, (2) CXL Switch-attached, (3) CXL Switch-attached with mixed
paths, and (4) CXL Switch-attached with one switch connecting
multiple CXLs. Figure 1 reveals our topologies. We mainly change
the value of the topology argument as suggested in [23] to simulate
behaviors of different topologies using Newick tree syntax (values
of other arguments are default used in the simulator).

CPU

CPU

CPU

CPU

CXL

switch

switch

switch

CXL

CXL

CXL

CXL

CXL

Topology 1

Topology 2

Topology 3

Topology 4

Figure 1: Different CXL Memory Topologies.

3.2 Simulation Results
3.2.1 CXL Switch Congestion and its Impact on HPC Performance.
Figure 2 illustrates the performance of BT and LU workloads across



Performance Study of CXL Memory Topology

1 2 4 8 12
Number of Threads

0

500

1000

1500

2000

2500

Em
ul

at
ed

 T
im

e 
(s

)

BT Workload

1 2 4 8 12
Number of Threads

0

250

500

750

1000

1250

1500

LU Workload
topology-1 topology-2 topology-3 topology-4

Figure 2: HPC Results of Different CXL Memory Topologies.

Table 1: Hardware details of our evaluation platform.

Component Specification
OS Ubuntu 22.04 with kernel 5.15.0-101-generic

CPU Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
24 cores in total

Memory two NUMA nodes, each with ~90 GB memory

1 2 4 8 12
Number of Threads

0

100

200

300

400

Em
ul

at
ed

 T
im

e 
(s

)

Mistral Workload
topology-1 topology-2 topology-3 topology-4

Figure 3: LLM Results of Different CXL Memory Topologies.

various thread counts and CXL switch topologies, revealing notable
congestion effects in high-performance computing (HPC) scenar-
ios. For the BT workload, topology-3 shows the most pronounced
congestion effects, with execution time increasing from 2406.86
seconds at 1 thread to 2422.27 seconds at 12 threads, peaking at
2433.29 seconds with 8 threads. This suggests that the benefits of in-
creased parallelism are outweighed by congestion in this topology.
Similarly, the LU workload on topology-3 demonstrates significant
impact, with execution time fluctuating but generally increasing
from 1547.13 seconds at 1 thread to 1576.79 seconds at 12 threads.
These patterns across topologies demonstrate that CXL switch con-
gestion impacts HPC performance in complex ways as parallelism
increases.

The non-linear nature of performance changes across different
topologies and workloads underscores the challenges in optimizing
CXL-connected systems for HPC applications. While some config-
urations show resilience to increased parallelism, others clearly
demonstrate the limitations imposed by CXL switch congestion.
This data highlights the importance of careful analysis when de-
ploying HPC workloads in such systems, as the balance between
parallelism benefits and CXL switch bottlenecks can significantly
impact efficiency, especially in multi-threaded, large-scale com-
putations. The research emphasizes the need for topology-aware
scheduling and resource allocation strategies to maximize perfor-
mance for HPC workloads in CXL-connected infrastructures.

3.2.2 CXL Switch Congestion and its Impact on LLM Performance.
Figure 3 illustrates the performance of Mistral workloads across
various thread counts and CXL switch topologies, revealing notable
congestion effects. The impact of CXL switch congestion becomes
evident as thread count increases, though in a non-linear fashion. In
topology-3, we observe an intriguing performance pattern: improv-
ing from 461 seconds at 1 thread to 439 seconds at 4 threads, but
then degrading to 458 seconds at 12 threads. This suggests initial
parallelism benefits followed by congestion effects at higher thread
counts. Similarly, topology-2 shows immediate congestion effects,
with performance worsening from 446 seconds at 1 thread to 460
seconds at 2 threads, and remaining elevated at 459-460 seconds
for higher thread counts.

These patterns across topologies demonstrate that CXL switch
congestion impacts LLM performance in complex ways as par-
allelism increases. The non-linear nature of these performance
changes suggests a nuanced interplay between thread count, CXL
topology, and workload characteristics. While the Mistral LLM
shows some resilience and even benefits from initial parallelism, the
eventual performance degradation underscores the critical need for
optimizing CXL-connected environments. This data highlights the
importance of careful analysis when deploying LLMs in such sys-
tems, as the balance between parallelism benefits and CXL switch
bottlenecks can significantly impact efficiency, especially in multi-
threaded, large-scale deployments.



Jianbo Wu† , Jie Liu† , Gokcen Kestor* , Roberto Gioiosa* ,
Dong Li† , and Andres Marquez*

Table 2: NPB-OMP workloads for evaluation. “BW” stands for “bandwidth”.

Type Workload Characterization Input Problem Mem. footprint
BT Dense linear algebra Unit-strided memory accesses from dense matrices Class D 49 GB
LU Sparse linear algebra Indexed loads and stores from compressed matrices Class D 53 GB

Figure 4: CXL Results of Stream Benchmark (x-axis repre-
sents number of OpenMP threads, y-axis represents Band-
width).

3.3 Machine-Ready Results
To verify real performance difference between different CXL mem-
ory topologies, we have conducted some experiments on real CXL
devices with topology-4 using Stream benchmark [12].

In Figure 4, the x-axis represents the number of OpenMP threads
used in the STREAM benchmark, ranging from 1 to 128 threads,
while the y-axis represents the bandwidth. As the number of threads
increases, the memory bandwidth initially shows a nearly linear im-
provement for all operations (Copy, Add, Scale and Triad). However,
after reaching approximately 32 threads, we also observe the con-
gestion phenomenon where bandwidth plateaus for Add and Triad
operations and even declines for Copy and Scale operations. This
suggests that beyond a certain thread count, there are diminishing
returns or even negative effects onmemory bandwidth performance
when using CXL switch.

3.4 Latency-Based Cost Model
Inspired by [17], we adopt a similar way to estimate TCO saving and
use a capacity-bound application (LLM inference [1]) as an example
to demonstrate how we develop our latency-based cost model for
CXL switch scenario, but our methodology can be extended to other
types of workloads as well. For LLM inference [1], the additional
capacity enabled by CXLmemory reduces the amount of data spilled
to SSD and results in higher performance (less runtime). This means
fewer servers will be needed to meet the same performance target.

Given that the workload maintains a relatively consistent mem-
ory footprint (the size of the active dataset) during execution, we
can approximate the execution time of the workload by dividing it
into three distinct segments:

(1) The segment processed using data stored in Main Mem-
ory (MMEM).

(2) The segment processed using data stored in CXL memory.
(3) The segment processed using data that has been offloaded

to SSD storage.
We first make these measurements from microbenchmarks on a

single server:
• Baseline performance (𝐿𝑠 ): Measure the latency when

(almost) all working set is spilled to SSD. The absolute
number is not used in our cost model. Instead, we then
normalize it to 1 in our cost model.

• Relative performance when the entire working set is
in MMEM (𝑅𝐿𝑑 ): Using the same workload, we measure
the latency when the entire working set is in MMEM and
normalize it to 𝐿𝑠 to get the relative performance (i.e., how
much faster compared to the baseline).

• Relative performance when the entire working set
is in CXL memory (𝑅𝐿𝑐 ): Using the same workload, we
measure the latency when the entire working set is in CXL
memory, and normalize it to 𝐿𝑠 to get the relative perfor-
mance.

We then formulate our cost model using the parameters outlined
in Table 3. For a working set size of𝑊 , the execution time of the
baseline cluster could be approximated as the sum of two segments:

(1) The segment that is executed with data in MMEM,
(2) The segment that is executed with data spilled onto SSD.

𝑇baseline = 𝑁baseline𝐷 · 𝑅𝐿𝑑 + (𝑊 − 𝑁baseline𝐷)
The execution time of the cluster with CXL memory could be

approximated in a similar way. It includes the segment that is
executed with data in main memory, in CXL memory, and spilled
to SSD respectively. We also consider congestion brought by using
CXL switch:

𝑇𝑐𝑥𝑙 = 𝑁𝑐𝑥𝑙𝐷 · 𝑅𝐿𝑑 + 𝑁𝑐𝑥𝑙𝐷 ·𝐶 · 𝑅𝐿𝑐
𝑚𝑖𝑛(𝑁𝑐𝑜𝑛𝑔𝑒𝑠𝑡 , 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 )

+
(
𝑊 − 𝑁𝑐𝑥𝑙𝐷 − 𝑁𝑐𝑥𝑙𝐷

𝐶

)
To meet the same performance target, 𝑇baseline = 𝑇𝑐𝑥𝑙 :

𝑁baseline𝐷 · 𝑅𝐿𝑑 − 𝑁baseline𝐷 = 𝑁𝑐𝑥𝑙𝐷 · 𝑅𝐿𝑑

+ 𝑁𝑐𝑥𝑙𝐷 ·𝐶 · 𝑅𝐿𝑐
𝑚𝑖𝑛(𝑁𝑐𝑜𝑛𝑔𝑒𝑠𝑡 , 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 )

− 𝑁𝑐𝑥𝑙𝐷 − 𝑁𝑐𝑥𝑙𝐷

𝐶

With some simple transformations, we get the ratio between
𝑁𝑐𝑥𝑙 and 𝑁baseline:



Performance Study of CXL Memory Topology

Table 3: Parameters of our Latency-Based Cost Model.

Parameter Description Example Value

𝐿𝑠
Latency when (almost) entire working set is spilled to SSD on a server.

Normalized to 1 in the cost model. 1

𝑅𝐿𝑑
Relative latency when the entire working set is in main memory on a

server, normalized to 𝑃𝑠 .
0.1

𝑅𝐿𝑐
Relative latency when the entire working set is in CXL memory on a

server, Normalized to 𝑃𝑠 .
0.125

𝐷
The MMEM capacity allocated to each server. For completeness only,

not used in cost model.

𝐶
The ratio of main memory to CXL capacity on a CXL server. E.g. 2

means the server has 2x MMEM capacity than CXL memory. 2

𝑁𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Number of servers in the baseline cluster.

𝑁𝑐𝑥𝑙
Number of servers in the cluster with CXL memory to deliver the same

performance as the baseline.

𝑅𝑡

Relative TCO comparing a server equipped with CXL memory vs.
baseline server. E.g. If a server with CXL memory costs 10% more than

the baseline server, this parameter is 1.1.
1.1

𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 Number of CPU threads used. 12
𝑁𝑐𝑜𝑛𝑔𝑒𝑠𝑡 Number of CPU threads used to cause congestion. 8

𝑁cxl
𝑁baseline

=
𝑅𝐿𝑑 − 1

𝑅𝐿𝑑 + 𝐶 ·𝑅𝐿𝐶
𝑚𝑖𝑛 (𝑁𝑐𝑜𝑛𝑔𝑒𝑠𝑡 ,𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ) − 1 − 1

𝐶

TCO saving can then be formulated as follows:

𝑇𝐶𝑂saving = 1 − 𝑇𝐶𝑂𝑐𝑥𝑙

𝑇𝐶𝑂baseline
= 1 − 𝑁𝑐𝑥𝑙𝑅𝑡

𝑁baseline
For example, suppose 𝑅𝐿𝑑 = 0.1, 𝑅𝐿𝑐 = 0.125, 𝐶 = 2, 𝑁𝑐𝑜𝑛𝑔𝑒𝑠𝑡 =

8, 𝑁𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 12, we get

𝑁𝑐𝑥𝑙

𝑁baseline
= 65.75%

from the cost model. This means that by using CXL memory, we
may reduce the number of servers by 34.25%. And if we further
assume 𝑅𝑡 = 1.1 (a server with CXL memory costs 10% more than
the baseline server), the TCO saving is estimated to be 27.67%.

Our cost model provides an easy and accessible way to estimate
the benefit from using CXL switch, providing important guidance
to the design of the next-generation infrastructure.

4 RELATEDWORK
Liu et al. [9] have conducted a detailed performance analysis of
CXLmemory-expansion cards, revealing that CXLmemory exhibits
latency comparable to remote DRAM but with lower bandwidth,
as evidenced by latency increases of 2.8×, 2.4×, and 2.2× on three
evaluated systems, respectively, compared to local DRAM. Notably,
their study indicates that CXLmemory can serve as a unique NUMA
node with latencies similar to remote DRAM under heavy system
load, suggesting the potential for CXL switches to manage memory
resources efficiently in complex memory hierarchies.

The evolution of CXL technology has brought forth new paradigms
in memory sharing and interconnect solutions. In a recent study
by Jain et al. [6], the authors address the challenges and potential
of memory sharing within CXL-enabled systems. Their findings on

the coherency mechanisms introduced by CXL 3.0, such as Back
Invalidation, are particularly relevant to the design of CXL switches.
This work provides a framework for understanding the interplay
between hardware and software in managing shared memory re-
sources, which is critical when considering the role of CXL switches
in maintaining data consistency and system performance.

5 CONCLUSION
This paper conducted a comprehensive performance study of vari-
ous Compute Express Link (CXL) memory topologies, particularly
focusing on CXL switches. Our findings indicate significant per-
formance variations across different topologies, highlighting the
importance of selecting the right configuration based on specific
workload requirements.

While CXL switches offer promising benefits in terms of im-
proved bandwidth and reduced latency, their integration poses
challenges such as compatibility issues and routing complexity.
Nonetheless, the potential for enhanced scalability and dynamic
resource allocation makes CXL a transformative technology for
modern computing environments.

Overall, our study underscores the necessity of thorough eval-
uation and optimization of CXL memory topologies to maximize
performance gains. Future research should continue exploring CXL
standards and solutions to address the remaining challenges, en-
suring that CXL technology can meet the increasing demands of
contemporary high-performance computing and large language
model workloads.

ACKNOWLEDGMENTS
This work is supported by the US DOE Office of Science project
“Advanced Memory to Support Artificial Intelligence for Science"
at PNNL. PNNL is operated by Battelle Memorial Institute under
Contract DEAC06-76RL01830.



Jianbo Wu† , Jie Liu† , Gokcen Kestor* , Roberto Gioiosa* ,
Dong Li† , and Andres Marquez*

REFERENCES
[1] Intel Analytics. 2023. IPEX-LLM: Accelerate local LLM inference and finetuning

on Intel CPU and GPU. https://github.com/intel-analytics/ipex-llm.
[2] Andi Kleen (SUSE Labs). [n. d.]. NUMA Support for Linux. https://github.com/

numactl/numactl.
[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Tam Do and Sanketh Srinivas. 2023. CXL Memory Expansion, Pooling, Sharing,
FAM Enablement, and Switching. Open Compute Project. https://www.youtube.
com/watch?v=VCYSzBFCBnQ Presented by Tam Do (Microchip) and Sanketh
Srinivas (Microchip), Open Compute Project.

[5] Yehonatan Fridman, Suprasad Mutalik Desai, Navneet Singh, Thomas Willhalm,
and Gal Oren. 2023. CXL Memory as Persistent Memory for Disaggregated HPC:
A Practical Approach. arXiv:2308.10714 [cs.DC]

[6] Sunita Jain, Nagaradhesh Yeleswarapu, Hasan Al Maruf, and Rita Gupta.
2024. Memory Sharing with CXL: Hardware and Software Design Approaches.
arXiv:2404.03245 [cs.ET]

[7] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B. arXiv preprint
arXiv:2310.06825 (2023).

[8] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 574–587.

[9] Jie Liu, Xi Wang, Jianbo Wu, Shuangyan Yang, Jie Ren, Bhanu Shankar, and
Dong Li. 2024. Exploring and Evaluating Real-world CXL: Use Cases and System
Adoption. arXiv:2405.14209 [cs.PF]

[10] Meta Llama. 2024. Llama3 Model Card. https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md. Accessed: 2024-05-31.

[11] Júnior Löff, Dalvan Griebler, Gabriele Mencagli, Gabriell Araujo, Massimo
Torquati, Marco Danelutto, and Luiz Gustavo Fernandes. 2021. The NAS parallel
benchmarks for evaluating C++ parallel programming frameworks on shared-
memory architectures. Future Generation Computer Systems 125 (2021), 743–757.

[12] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[13] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551–564.

[14] Debendra Das Sharma, Robert Blankenship, and Daniel S. Berger. 2024.
An Introduction to the Compute Express Link (CXL) Interconnect.
arXiv:2306.11227 [cs.AR]

[15] Richard Solomon. 2023. CXL: How an Accelerator Link Caused a Memory
Revolution. Synopsys IP Technical Bulletin (2023). https://www.synopsys.com/
designware-ip/technical-bulletin/cxl-in-memory-solutions.html

[16] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. 2023. Demystifying
cxl memory with genuine cxl-ready systems and devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture. 105–121.

[17] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, et al. 2024. Exploring
Performance and Cost Optimization with ASIC-Based CXL Memory. In Proceed-
ings of the Nineteenth European Conference on Computer Systems. 818–833.

[18] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[20] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. 2022. Evaluating emerging
CXL-enabled memory pooling for HPC systems. In 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE, 11–20.

[21] Jianbo Wu, Jie Ren, Shuangyan Yang, Konstantinos Parasyris, Giorgis Georgak-
oudis, Ignacio Laguna, and Dong Li. [n. d.]. LM-Offload: Performance Model-
Guided Generative Inference of Large Language Models with Parallelism Control.
([n. d.]).

[22] Shuangyan Yang, Minjia Zhang, Wenqian Dong, and Dong Li. 2023. Betty:
Enabling large-scale gnn training with batch-level graph partitioning. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 103–117.

[23] Yiwei Yang, Pooneh Safayenikoo, Jiacheng Ma, Tanvir Ahmed Khan, and An-
drew Quinn. 2023. CXLMemSim: A pure software simulated CXL. mem for
performance characterization. arXiv preprint arXiv:2303.06153 (2023).

Received 24 June 2024; accepted 5 Aug 2024

https://github.com/intel-analytics/ipex-llm
https://github.com/numactl/numactl
https://github.com/numactl/numactl
https://www.youtube.com/watch?v=VCYSzBFCBnQ
https://www.youtube.com/watch?v=VCYSzBFCBnQ
https://arxiv.org/abs/2308.10714
https://arxiv.org/abs/2404.03245
https://arxiv.org/abs/2405.14209
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://www.cs.virginia.edu/stream/
https://arxiv.org/abs/2306.11227
https://www.synopsys.com/designware-ip/technical-bulletin/cxl-in-memory-solutions.html
https://www.synopsys.com/designware-ip/technical-bulletin/cxl-in-memory-solutions.html
https://arxiv.org/abs/2302.13971

	Abstract
	1 Introduction
	2 Background
	3 Analysis
	3.1 Setup
	3.2 Simulation Results
	3.3 Machine-Ready Results
	3.4 Latency-Based Cost Model

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

