
PROLONG: Priority based Write Bypassing Technique for Longer
Lifetime in STT-RAM based LLC

Prabuddha Sinha∗
prabuddha.19csz0008@iitrpr.ac.in
Indian Institute of Technology

Ropar, India

Krishna Pratik BV
bvkrishnap2001@gmail.com
RV College of Engineering

Bangalore, India

Shirshendu Das
shirshendu@cse.iith.ac.in

Indian Institute of Technology
Hyderabad, India

Venkata Kalyan Tavva
kalyantv@iitrpr.ac.in

Indian Institute of Technology
Ropar, India

Abstract
The rise of data-driven applications requires larger on-chip Last
Level Caches (LLCs) in multicore systems which need denser chips
with lower power consumption. Non-Volatile Memory (NVM) tech-
nologies such as Spin-Transfer Torque RAM (STT-RAM) based LLCs
fulfill these requirements. STT-RAM based LLCs suffer from no-
table shortcomings, including higher write latency, increased write
power consumption, and limited endurance. The primary cause of
the low write endurance of an STT-RAM based LLC is the uneven
distribution of write operations across the cache. To address the
challenge of low write endurance in an STT-RAM based LLC while
minimizing performance impact, we propose a unique inter-set
wear leveling technique. It involves aggressively bypassing the
write-back requests coming to the LLC from upper level of cache
memories and writing directly to the main memory. Only those
bypassed writes, which may be accessed again in the future, are
stored in an SRAM buffer. Bypassing writes for a specific block
in the LLC to SRAM Buffer or Main Memory is contingent upon
satisfying certain conditions based on the set-wise write count and
the priority of the block. Through extensive computational anal-
ysis, we have determined that the application of this technique
in a quadcore setup reduces inter-set write variation by 84% and
intra-set write variation by 19%. A lifetime improvement of 35 times
as compared to the baseline STT-RAM based LLC can be achieved.
Importantly, our approach maintains the system performance.

CCS Concepts
•Computer systems organization→ System on a chip; •Hard-
ware→ Spintronics and magnetic technologies;Memory and
dense storage.

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Keywords
STT-RAM, LLC, write bypassing, SRAM Buffer, Inter-set Write
Variation, Lifetime Improvement.

ACM Reference Format:
Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan
Tavva. 2024. PROLONG: Priority based Write Bypassing Technique for
Longer Lifetime in STT-RAM based LLC. In Proceedings of Make sure to enter
the correct conference title from your rights confirmation email (MEMSYS
’24). ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
With the onset of the Artificial Intelligence and Machine Learning
era, the upcoming workloads will always be highly data intensive.
Supporting such workloads require larger on-chip caches in order
to minimize the off chip data movement that incurs extra latency.
CPU architectures have been revolutionized over the years, but
the traditional cache architectures are not able to scale up as such,
creating a bottleneck in performance. Therefore, there is a need for
a larger sized Last Level Cache (LLC). SRAM cells are commonly
used for on-chip cache designs in today’s multiprocessors. They
have a few drawbacks such as requiring large area (i.e., relatively
low density) and high leakage power. In view of these demerits
various emerging Non-Volatile Memory (NVM) technologies are
being explored as viable alternatives to the standard SRAM’s. Phase
Change Random Access Memory (PCRAM) [10], Resistive Random
Access Memory (RRAM) [13] and Spin Transfer Torque Random
Access Memory (STT-RAM) [8] have been proposed as NVM’s.
NVM technologies offer several advantages over traditional SRAM
technology including higher density, non-volatility, improved scal-
ability and low leakage power. Nonetheless, there are a few major
drawbacks of using NVM’s as on-chip caches mainly the expensive
write operations. NVM’s exhibit high write power consumption,
low write endurance and high write latency. The long write latency
of the NVM’s place undue pressure on the LLC request queue and
can lead to congestion[14]. The write endurance is also a concern-
ing factor with RRAM [34] supporting only 1011 write operations
while PCRAM[24] supporting upto 108 write operations. Whereas,
STT-RAM [22] is expected to sustain 1015 write operations but
after experimentation the actual value is less than 4 × 1012. Among
the emerging NVM technologies, STT-RAM is considered as an
adoptable alternative of SRAM for LLC design.

https://orcid.org/0009-0002-7182-7569
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

When applications are run on various cores of a multiproces-
sor simultaneously, because of their inherent behaviour, they then
create write variation (WV) throughout the LLC that results in
drastic drop in the lifetime of the STT-RAM based LLC. The write
variations are categorized into two: Inter-set write variation and
Intra-set write variation1. Uneven distribution of writes between
cache sets is known as inter-set write variation. This imbalance
means that certain sets within the cache experience significantly
higher writes than others, leading to rise in the failure rate in the
heavily written sets compared to their counterparts. On the other
hand, intra-set write variation arises from differing write frequen-
cies among individual blocks (way/coloumn) within a cache set.
Specifically, certain blocks within the set endure a disproportion-
ately high number of writes compared to others, resulting in the
accelerated deterioration of these heavily utilized blocks. These
fluctuations in write behavior not only shorten the lifespan of the
STT-RAM LLC but also contribute to a reduction in LLC capacity
over time. The lifetime of the STT-RAM LLC is extended with a
decrease in write variation both within and between sets. The quan-
tity of writes is undoubtedly another significant factor that has a
direct impact on the lifetime of STT-RAM LLC.

Numerous wear-levelling techniques have been proposed over
the years, including both inter-set wear-levelling and intra-set wear-
levelling techniques. Wang et al. [27] presented i2WAP a combina-
tion of both PoLF and SwS. PoLF (Probabilistic Set Line Flush) is a
write blocking method to a specific cache block in the set. It marks a
block as invalid after a fixed number of writes, which is determined
by a Flush Threshold (FT). SwS (Swap Shift) is employed to mitigate
inter-set write variation, which entails modifying the mapping of
two sets following an epoch, only if a certain threshold is reached,
which is referred to as the Swap Threshold (ST). Jokar et al. [9]
introduced Sequoia that comprises of G-OAS and WAD. G-OAS
(Grouped On-Access Interset Swapping) proposes a set remapping
technique where the mapping of write hot sets are swapped with
those sets that are not write hot. WAD (Write-back aware intra-set
displacement) checks for hot cache lines, making it a candidate
for displacement. It follows a two-phase invalidation-displacement
policy, first invalidating the hot line while protecting its metadata,
then displacing it if dirty. Agarwal et al. [2] proposed three differ-
ent approaches window based approaches namely Static Window
Write Restriction (SWWR): where the window size is static, Dy-
namic Window Write Restriction (DWWR): where window size
changes dynamically and Dynamic Way Aware Write Restriction
(DWAWR).

Figure 1 and Figure 2 illustrates the reduction in write variations
(WV) and the Normalized IPC reduction respectively for various
state-of-the-art techniques as compared to the baseline. Here, the
baseline is considered as STT-RAM LLC with LRU replacement
policy and no wear levelling technique. The specifics about the
experimental setup is discussed in Section 4. From the figures, it
is evident that techniques such as SWWR, DWAWR, PoLF, and
WAD are unable to decrease the inter-set WV to the same extent
as intra-set, while techniques such as SwS and G-OAS is able to
decrease only the inter-set WV. Furthermore, the majority of these
1Throughout the paper we assume three levels of cache memories where the LLC (L3)
is designed with STT-RAM. All the cache memories are considered as set-associative
cache with 64B block size.

Figure 1: Percentage Reduction in Write variations (WV) in
the existing wear-levelling techniques over baseline (LRU)

Figure 2: Percentage Reduction in IPC in the existing wear-
levelling techniques over baseline (LRU)

existing techniques experience a drop in performance compared
to the baseline. Figure 2 illustrates that there is a decline in their
performance ranging from 7% to 23%. We combine the best of both
the best techniques: SwS + DWAWR and have discovered that it did
not perform as expected. The execution of SwS and DWAWR are
not conductive as they interfere in each others smooth functioning.
The reduction in both inter-set and intra-set write variation was
significantly lesser compared to when the techniques were applied
individually. The IPC was also reduced significantly. SwS always
leads to additional remapping. The blocking of writes into ways
due to DWAWR can cause further increase in the remapping and
migration, which thereby increases the write count of the LLC. The
existing wear-leveling techniques are insufficient in effectively min-
imizing inter-set write variation as well as intra-set write variation
of STT-RAM LLC. These techniques can enhance the lifetime of
a STT-RAM LLC by maximum of up-to 9 times. To this end we
propose PROLONG.

In this work, we have introduced a highly effective wear-leveling
technique PROLONG, that greatly minimises both the inter-set and
intra-set WV and also reduces the write count. Here, we employ
priority based write bypassing as an approach to minimize writes in
the cache sets that experience a high write count. The primary focus
of this work is to understand the rationale behind the intensity of
bypassing and the selection of cache sets for bypassing. The cache
set selection helps in redistributing the writes across the whole
cache. An in-depth discussion is provided in Section 3. The primary
contribution of the work can be classified as:

• We observe that PROLONG minimizes the variation in write
operations within a STT-RAM LLC through write bypassing.



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

Experimentally it is observed that there is a decrease in
inter-set WV of up-to 83% and intra-set WV up-to 19.5%
w.r.t. baseline.

• STT-RAM LLC experiences a substantial enhancement in its
lifetime up-to 35x.

• PROLONG preserves the enhancement in lifetime while
maintaining system performance. It demonstrates a perfor-
mance improvement up-to 2%.

• Rigorous experimental analysis thoroughly examines both
the proposed concept and the existing concepts.

To the best of our understanding, no research has been conducted
on utilizing the write bypassing concept to mitigate write variation
(both inter-set and intra-set) in an STT-RAM LLC. The existing
techniques for reducing write variation primarily emphasise on
distributing the writes across the cache, rather than reduction in
the write count. Our technique provides a method which will re-
duce both the write count in the STT-RAM LLC and also the write
variation.

The rest of the paper is organised as follows. The background and
motivational discussions are given in Section 2. Section 2.3 discusses
the mathematical relationship among write-variations, number of
writes and lifetime. The proposed idea is discussed in Section 3.
The experimental setup and the results analysis are discussed in
Section 4 and Section 5 respectively. Related works are discussed
in Section 6. Finally the paper concludes in Section 7.

2 Background and Motivation
This section highlights the characteristics of STT-RAM, the NVM
that we have used to design the LLC. It further discusses the differ-
ent types of write variations plaguing STT-RAM and the motivation
behind our architectural changes.

2.1 STT-RAM Cell
Figure 3 (a) shows the conceptual layout of an STT-RAM cell. This
cell comprises of an access transistor alongside a Magnetic Tun-
nel Junction (MTJ). The MTJ structure consists of a tunnel barrier,
composed of MgO, sandwiched between two ferromagnetic layers.
The reference layer, possesses a fixed magnetization direction. Con-
versely, the magnetization direction of the other layer, termed the
free layer, is variable and can be altered by a spin-polarized current.
The tunnel barrier serves as a thin insulating layer separating the
two ferromagnetic layers. These layers magnetization directions
encode the stored data bit within the cell. Specifically, when the
magnetization directions are anti-parallel, the resulting high re-
sistance represents a logical ‘1’ as shown in Figure 3 (c), whereas
parallel magnetization denotes a logical ‘0’ with low resistance as
shown in Figure 3 (b).

Both reading and writing operations are performed by creating a
voltage differential between the source and a bit-line. To write a ‘0’
in the STT cell, a significant positive voltage is applied between the
source and a bit-line, while writing a ‘1’ involves applying a sub-
stantial negative voltage. Conversely, the read operation involves
applying a minor voltage between the source and a bit-line, gen-
erating a current that is subsequently compared with a reference
current to determine the ‘0’ or ‘1’ cell state.

BIT LINE

Free Layer
Barrier Layer
Fixed Layer

DRAINSOURCE

SOURCE LINE

GATE

WORD LINE

NMOS

(a)

MTJ Reference Layer

MgO

Free Layer

Bit Line (BL)

Source Line (SL)

Word Line (WL)

(b)

Reference Layer

MgO

Free Layer

Bit Line (BL)

Source Line (SL)

Word Line (WL)

(c)

Figure 3: Layout of an STT-RAM cell

2.2 STT-RAM based LLC (STT-RAM LLC)
STT-RAM offers a wide range of advantages over conventional
SRAM based LLC and other NVM’s too [30], [22]. The general
characteristics of an STT-RAM cell as compared to a SRAM cell
is shown in the Table 1. Here F depicts the smallest feature size
within a specific technology node.

Table 1: Comparison between SRAM and STT-RAM cell.

Parameters SRAM STT-RAM
Cell Size(𝐹 2) 120-200 6-50

Write Endurance 1016 4 × 1012
Speed(Read/Write) Very Fast Very Fast/Slow
Leakage Power High Low

Dynamic Energy(R/W) Low Low/High
Retention Period Very Low High

Therefore, even though STT-RAM has a lot of advantages over
SRAM like smaller cell size, low leakage power and higher reten-
tion time as depicted in Table 1, it comes with its own set of dis-
advantages. The primary obstacle facing on chip memory based
on STT-RAM LLCs, is the elevated write latency and write energy
consumption in comparison to SRAM. Although various techniques
and hybrid technologies as discussed in Section 6 have been pro-
posed in order to reduce the write latency of the STT-RAM LLC
none have been successful to do both, i.e. improve performance
and extend the lifetime of the STT-RAM LLC. Our work focuses on
providing effective solutions to both these problems.

2.3 Write Variation and Lifetime
Write variation poses a substantial challenge in the design of cache
and write limited memory technologies. Extensive write variation
can severely diminish the cache’s lifespan. A mere fraction of heav-
ily written memory cells can disable an entire cache or memory
system, despite most cells not nearing wear-out. Implementing
wear-leveling in caches introduces additional challenges due to
variations in write counts both within individual cache sets (intra-
set variations) and across different cache sets (inter-set variations).
Our work aims at reducing the write variation in the STT-RAM LLC.
For the purpose of quantifying the write variation, we employ co-
efficients. Inter-set write variation and intra-set write variation are
represented by Equation 1 and Equation 2 respectively as defined
in [27].



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

𝐼𝑛𝑡𝑒𝑟𝑉 =
1

𝑊𝑎𝑣𝑔

√︄∑𝑁
𝑖=1 (

∑𝑀
𝑗=1 𝑤(𝑖, 𝑗 )/𝑀 −𝑊𝑎𝑣𝑔 )2

𝑁 − 1
(1)

𝐼𝑛𝑡𝑟𝑎𝑉 =
1

𝑊𝑎𝑣𝑔 .𝑁

𝑁∑︁
𝑖=1

√︄∑𝑀
𝑗=1 (𝑤𝑖,𝑗 −

∑𝑀
𝑗=1 𝑤𝑖,𝑗 /𝑀 )2

𝑀 − 1
(2)

Here, wi,j is the block write count of 𝑖th set and 𝑗 th way. Average
write countWavg is defined as :

𝑊𝑎𝑣𝑔 =

∑𝑁
𝑖=1

∑𝑀
𝑗=1𝑤𝑖, 𝑗

𝑁𝑀
(3)

𝑀 is the total number of cache ways in a set and 𝑁 is the total
number of cache sets. Cache wear-leveling aims to mitigate both
inter-set and intra-set variations while also limiting the maximum
write count. Therefore, configurations having lower write variation
values shows better improvements in the lifetime as the maximum
write counts are lower.

Relative lifetime is used to quantify the lifetime of the cache. It
can be defined as the inverse of the maximum write count on a
cache line in the LLC [2]. It is a derivative of raw error tolerant
lifetime which is the time taken by the cache for the first error to
occur in a cache line after specific number of writes to that cache
line. The term “raw” implies that no error recovery mechanism is
considered.

2.4 Motivation
This study focuses on minimizing inter-set write variation while
maintaining the performance of the STT-RAM LLC. A key hurdle
in addressing inter-set write variation lies in the fixed mapping
policies inherent in set-associative caches. In such caches, a block
is assigned to a specific set, and relocating a block from one set
to another necessitates a modification in its block-mapping policy.
This can lead to a drop in IPC of the system. Consequently, strategies
to alleviate inter-set write variation while reducing the effects of
remapping policies have remained largely unexplored for STT-RAM
LLC’s. This prompted us to introduce a proficient inter-set wear
leveling technique.

Through analysis of the effect of write variation, we performed
experiments utilizing a simulator for a quad-core system equipped
with a 16 MB 16-way set-associative STT-RAM LLC lacking wear
leveling support with standard LRU replacement policy. We have
used Mix 2 shown in Table 7. The configuration is executed for
250 Million instructions. Figure 4 shows us the non uniform write
distribution across cache sets that are prevalent. It depicts the write
count after every 100 sets. Nonuniform writes to an STT-RAM LLC
is the major reason for decreasing endurance as well as the lifetime
of the LLC, thereby inducing errors. The lifetime of the LLC is
directly dependent on the maximum write count. The maximum
write count among all the sets is 3516 while the write average is
only 564. This clearly shows the huge disparity in write counts that
is present among the sets. If the inter-set write variation is removed
then the overall lifetime will be enhanced by 6.23x in this case.

Figure 4: Non-uniform write distribution across cache sets.

3 PROLONG: The Proposed Work
3.1 Proposed Architecture
In order to support PROLONG we propose a few architectural
changes as compared to the traditional memory hierarchy. We
introduce three new components namely writes set counter (WSC),
a small SRAM buffer located between the STT-RAM LLC and the
Main Memory and a Liveness Score Counter (LSC). Figure 5 depicts
the newly proposed architecture. RQ depicts the Read Queue and
WQ depicts the Write Queue of the LLC. The SRAM Buffer is placed
in between the LLC and MM in the memory hierarchy and before
checking for any block in the MM we check for it in the SRAM
Buffer. Each block present in the LLC is also equipped with the
“Liveness Score” counter (LSC) while each and every set is equipped
with a WSC.

3.1.1 Writes set counter (WSC). Each set of the STT-RAM LLC is
equipped with a dedicated 8-bit write counter. These write counters
are updated whenever there is a write into that specific set of
the STT-RAM LLC. Whenever the write counter is saturated in a
specific epoch, for the next epoch the write count for that specific
write counter is halved. This way any new incoming writes can
again be counted in that counter. This way the significance of the
write intensity in that counter is not explicitly dismissed for the
upcoming epochs.

3.1.2 SRAM Buffer. A small SRAM buffer is placed in between
the STT-RAM LLC and the Main Memory. This buffer is used to
store selective high priority writes from write hot ways, that have
been bypassed from the STT-RAM LLC by PROLONG to reduce the
inter-set write variation. The writes that are stored in the SRAM
buffer are those writes that have high “liveness score”, i.e. these
writes have a high probability to be recalled and may be used again
in the near future by the LLC. We conduct studies with buffer size
varying from 32KB to 512KB. The buffer is divided into multiple
parts of 32 entries and a block can be mapped into a fixed part
like set-associative cache. The FIFO replacement policy is used for
each part separately. Prior to sending any LLC miss request to the
main memory, the block is first searched in the buffer. In case of a
hit in the buffer, the block is moved back into the LLC. The main
purpose of this buffer is to reduce the side effects of bypassing in
PROLONG and maintain the performance of the system as time
taken to service a block from memory will be drastically greater



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

than the time taken to service it from the small SRAM buffer in
case of a hit.

3.1.3 Liveness Score Counter (LSC). Every block in the STT-RAM
LLC is equipped with a 2-bit “liveness score” counter (LSC) whose
value is updated upon every access to the blocks from L2. It is used
to store the liveness score of the block.

Liveness Score of a block is defined as the reuse probability of
the LLC block in the L2 cache. 32 observer sets present in both the
L2 and the LLC are used in order for learning the reuse probability
of the block similar to [11], [14]. It uses program counters (PC’s)
to sample the blocks. At the L2 cache, hashed PC’s (Instruction
addresses that last accessed the cache line in the L2) is maintained
as a reference table. This table consists of four 10-bit counters each
mapping to a liveness buckets ranging from 0 to 20%, 21 to 50%,
51 to 70%, and 71 to 100%. The proportion of writes in an access
PC being recalled from the LLC is defined as liveness. 20% liveness
implies there were 20 reads among 100 writes to the LLC in a single
PC based access. Liveness counters are decremented during eviction
of a block from an L2 observer set. The sampler technique described
in [11], [14] provides us a reference for usage of partial-PC tags for
blocks in the observer sets. Initially whenever a block is written
into L2 cache the liveness counters are set as 0. Upon a LLC hit, the
liveness counters of the access PC are incremented. Eviction and
hits have different changes in the liveness counters for observer
sets. Eviction of a block having 21-50% liveness counter leads to
counter decrement of 2 and on a hit it is incremented by 10 for both
21-50% counter and 0-20% counter. A positive value of this counter
indicates that it has at least 20% liveness. A 2-bit liveness score
value is also assigned to every new incoming block in the L2 if it
is not in the observer set, based on its previous PC based observer
set value. The highest liveness bucket has the highest priority. For
example, if both 71 to 100% and 51 to 70% liveness counters are both
positive, the line is assigned the 71 to 100% live score. Only four
buckets are being tracked for each block, hence 2 bits are required
for the liveness score in L2. The liveness score is part of the L2
evicted block. An LSC is assigned to store this liveness score value
in LLC. Initially, any new write will have a default liveness score of
0 corresponding to the 0-20% liveness bucket.

3.2 Working of PROLONG
The main idea is to selectively enable bypass for only the heavily
written sets. This helps in making the writes uniform throughout
the cache sets. The write bypass depends on two parameters: the
liveness score counter (LSC) and the write set counter (WSC).

The LSC of any block in the LLC can range from 0 to 3. Table
2 represents how the write liveness score buckets and their status
bits are assigned based on their liveness percentage.

Write Hot (WH) bucket selection among sets: Whenever
there is an incoming write, that can either be a L2 write-back or a
Last Level Cache miss, the write set counter is incremented. The
WSC indicates the write hotness of the set. A cache-set is set to be
write hot if it has garnered repeated writes to it within an epoch.
After every epoch, which is a certain number of instructions, we
identify the write hot sets and then we target priority based write
bypassing from these write hot sets. These write hot sets are fur-
ther classified into three categories equally and different degrees of

Table 2: Bucket Distribution among sets based on Liveness
Score (LS).

LSC Bucket LSC Bit Value Liveness Percentage
LS0 00 0-20%
LS1 01 21-50%
LS2 10 51-70%
LS3 11 71-100%

bypassing are applied to each category. The number of sets selected
to be bypassed is based on the bypass aggressiveness percentage.
We consider bypass aggressiveness from 2% heavily written sets
to 15% heavily written sets. The chosen hot sets are subsequently
distributed evenly among three buckets, determined by their respec-
tive write counters. Sets with the highest write count are allocated
to bucket 𝐻3, those with a medium write count are assigned to
bucket 𝐻2, and sets with the lowest write hotness among the hot
sets are placed in bucket 𝐻1. Remaining sets that show less write
activity, are allocated to 𝐻0 bucket. To store the bucket status bit
for each block, 2 bits per cache-set are required. Table 3 shows how
the write hot buckets and their status bits are assigned.

Table 3: Bucket Distribution among sets based on Write
Counter.

WH
Bucket

Bit
Value

Set Status

𝐻0 00 Sets that are not write hot
𝐻1 01 Write hot sets with low writes
𝐻2 10 Write hot sets with medium writes
𝐻3 11 Write hot sets with high writes

Bypassing decision and aggressiveness: At the beginning of
each epoch, adjustments to the write counters and write hot buckets
for every set are necessary. Write hot sets among all sets in an LLC
are identified based on the level of bypassing aggressiveness. The
more aggressive the bypassing, the greater the number of write
hot sets selected. These write hot sets are divided into write hot
buckets and the bucket values for each set are assigned accordingly.
The distribution of write hot sets is allocated uniformly among the
three write hot buckets: 𝐻1, 𝐻2 and 𝐻3 as depicted in Table 3.

Bypass Aggressiveness is defined as percentage of sets consid-
ered as hot sets. Suppose if the write bypassing aggressiveness
is 15%, we consider 15% of all sets in the cache as write hot. The
top 5% write hot sets are assigned to H3 then the medium 5% is
assigned to H2 and the lowest 5% among the hot sets is assigned to
H1. The LSC of the blocks is automatically re-calibrated after every
cache access. When a write-back request is generated from L2, the
block needs to be either written in LLC or bypassed. The decision is
taken based on the liveness score of the block and the WH bucket
it maps to. It first inspects the WH bucket of the set to which the
write block needs to be written. If it is in 𝐻0, there will be no write
bypassing. Conversely, if the writes are identified to be directed
to the write hot sets (𝐻3, 𝐻2 or 𝐻1), we need to assess whether the
incoming writes should be bypassed or not. Write Bypassing logic



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

for incoming write-backs to the STT-RAM LLC sets are depicted
through Table 4.

Table 4: Write Bypassing based on Write Hot Sets (WH) and
LSC Buckets.

WH
Bucket

LS Bucket Bypassing

1 𝐻0 LS0, LS1, LS2, LS3 No Bypassing
2 𝐻1 LS3, LS2, LS1 No Bypassing
3 𝐻1 LS0 Bypass to Main Memory
4 𝐻2 LS3, LS2 No Bypassing
5 𝐻2 LS1 Bypass to Buffer
6 𝐻2 LS0 Bypass to Main Memory
7 𝐻3 LS3 No Bypassing
8 𝐻3 LS2, LS1 Bypass to Buffer
9 𝐻3 LS0 Bypass to Main Memory

Table 4 indicates that selection 1, 2, 4 and 7 will always lead to no
write bypassing from the designated set, i.e. the write will occur in
its original state. This shows that blocks with higher liveness score,
specifically LS3 will not be bypassed in any situation. Selection 3, 6
and 9 indicate that low priority blocks with LS0 are not needed to
be stored in write hot sets and are directly bypassed to the main
memory. The remaining selection 5 and 8 depict the conditions
necessary in order to bypass writes from the write hot sets to the
SRAM buffer.

3.3 PROLONG Algorithm
The work flow of the proposed PROLONG is depicted through the
Figure 5. It comprises of the following steps:

Step-1: Upon receiving a write-back request from L2, it is in-
serted into the write queue (WQ) of the LLC, and its LSC value is
evaluated from the incoming LS value.

Step-2: The LSC bucket value of the write request and the WH
bucket value of the set is both compared and the decision of by-
passing is taken based on the logic depicted in Table 4.

Step-3: If both conditions are met simultaneously, i.e., the LS
bucket and the WH bucket are favourable than, the write may be
bypassed to the SRAM buffer if they have a high LS value.

Step-4:Writes with low LS that have been selected for bypass
are directly sent to the main memory.

These processes are calculated simultaneously with the working
of the cache and are not under the critical path. However, the
the SRAM buffer access time during a LLC miss comes under the
critical path. We have considered this buffer access time in our
experimental analysis (Section 5.3).

4 Experimental Setup
4.1 Simulator Setup
For all the experimental implementation of this work we use the
ChampSim Simulator [6]. ChampSim replicates a diverse multicore
system featuring various cores and a custom memory hierarchy,
allowing each out-of-order core to be individually configured ac-
cording to specific requirements. Our experiments are conducted

WQ

STT-RAM
LLC

 W
rit

es
 S

et
C

ou
nt

er

LS

Check both the LS
Bucket and WH

Bucket and Bypass
based on Table 4.

SRAM BUFFER

L2 Cache
1

2

2

3

Main Memory
4

Figure 5: Architecture and Steps in PROLONG Algorithm

Table 5: Simulation parameters of the baseline system.

System Com-
ponents

Parameters

Core Out-of-order, bimodal branch predictor,
4 GHz with 6-issue width, 4-retire width,
352-entry ROB

L1I 32 KB, 8-way, 4 cycles
L1D 48 KB, 12-way, 5 cycles
L2 1MB, 8-way, 10 cycles, LRU
LLC 4MB, STT-RAM, 16-way,WL: 100 cycles, RL:

20 cycles, LRU
MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC
DRAM con-
troller

64-entry RQ and WQ, reads prioritized over
writes, Burst write: 6/8th of queue size

DRAM chip 4KB row-buffer per bank, open page, burst
length 16, tRP: 12.5ns, tRCD: 12.5ns, tCAS:
12.5ns

on a single and multicore (mainly 4 core) system with three lev-
els of cache hierarchy. L1 and L2 are SRAM based caches. The L3
(LLC) is designed with STT-RAM. For the multicore setup L3 is a
shared cache. The ChampSim is modified to support the STT-RAM
LLC. Table 5 shows us the detailed parameters of the system used.
WL denotes Write Latency while RL denotes Read Latency. All our
timing parametrers have been calculated with the help of CACTI
[23].

We compare our work with existing approaches namely, PoLF
[27], WAD [9],SwS [27], G-OAS [9], SWWR [2] and DWAWR [2]
and the baseline STT-RAM LLC. The baseline LLC uses LRU re-
placement policy and has no wear-levelling policy implemented.
In PoLF the flush threshold (FT) value has been assigned as 16 for
the simulations. WAD uses the clean-LRU block displacement algo-
rithm along with a 3-bit saturating counters (SC). SwS only helps
in swapping the mapping of two sets at once and all other sets are
shifted gradually. Swapping only occurs if the total write count
of the cache crosses a certain swap threshold (ST). G-OAS groups
the cache sets into small groups (4,8,16,etc.) and swaps the write
hot sets with the cold sets within the different groups. G-OAS(4)
indicates that 4 groups of sets are considered based on their write



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

Table 6: Different PROLONG configurations used.

Bypassing Ag-
gressiveness %

Buffer Sizes

PRO(2%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(5%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(10%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(15%) 32KB, 64KB, 128KB, 256KB and 512KB

hotness similar to our configuration. SWWR uses a window size
of 4 ways with a 12-bit write counter per window. DWAWR uses
a 11-bit write counter per way for counting the writes. Different
configurations of our work are shown in Table 6. We implement
PROLONG with varying configurations based on bypass aggres-
siveness and SRAM buffer size. PRO(𝑥%) indicates that the bypass
aggressiveness of PROLONG is 𝑥%. Our work uses only an 8-bit
counter per set for WSC because it is enough in calculating the
writes over our chosen epoch size. An extra 2-bit counter is used for
every set along with the WSC which is used to store the WH bucket
value. For our experiments, we consider epoch size to be 105 in-
structions. In a single-core setup for each workload, the simulation
commences with a 100 million instruction warm-up phase, followed
by an additional 1 billion instruction run to reach completion. In
case of multicore setup a 50 million instruction warm-up and a
250M instruction run was deployed for our quad core systems.

4.2 Workloads
We have used write intensive benchmarks from SPEC CPU 2006
benchmark suites [7]. We first simulated the SPEC CPU 2006 work-
loads and identified those workloads that are write intensive in LLC.
A few write intensive graph benchmarks from the GAP benchmark
suite[4] were also used for our simulations. Table 7 identifies all the
write intensive workloads on which our single-core simulations
have been run.

Table 7: Workloads for single-core system.

Benchmark Suite Write Intensive Workloads
SPEC 2006 cactusADM, gcc, GemsFDTD, lbm,

leslie3d, libquantum, mcf, milc, soplex,
sphinx3, wrf, xalancbmk, zeusmp

GAP bc, bfs, cc, pr, sssp

For the quad-core setup, we use 4 different workload mixes.
Each mix has different characteristics. The workload mixes are
depicted in Table 8. ’L’ denotes low write intensive workloads and
’H’ denotes high write intensive workloads. ’G’ denotes Graph
workloads.

5 Results Analysis
5.1 Single-core analysis
In this section we compare different wear-levelling techniques with
the baseline STT-RAM LLC considering various metrics. Among
the different configurations of PROLONG, we consider the con-
figurations only with 512KB buffer in this analysis with varying

Table 8: Workloads for Quad-Core System.

Mix Type Workloads
Mix1-LLHH gobmk, gromacs, mcf, libquantum
Mix2-HHHH mcf, libquantum, lbm, xalancbmk
Mix3-LLLL gobmk, gromacs, gamess, namd
Mix4-GGGG pr (page rank), bc (betweenness central-

ity), bfs (breadth first search), sssp (sin-
gle source shortest path)

degrees of aggressiveness. A detailed sensitivity analysis with other
PROLONG configurations is given in Section 5.3. Figure 6 shows
the reduction in inter-set write variation of different wear-levelling
techniques, normalised to baseline. It can be observed from the
figure that, on an average the inter-set write variation reduces by
around 84% in the case of PROLONG (15%) configuration. Among
the existing techniques, SWS and G-OAS(4) achieve inter-set write
variation reduction of 89% and 78%, respectively. Remaining tech-
niques perform poorly. The main reason for the reduction in inter-
set write variation in the case of PROLONG (10% & 15%) is aggres-
sive bypassing of writes from the heavily written sets. However,
it has been observed that excessive aggressive bypassing is not
required as even the 2% aggressiveness achieves 74% reduction in
inter-set write variation over the baseline. The higher the aggres-
siveness of bypass the greater the IPC of the system. More detailed
analysis about aggressiveness is discussed in Section 5.3.

The reduction in intra-set write variation of PROLONG is com-
parable with the existing wear-leveling techniques. As shown in
Figure 7, the reduction in intra-set variation for PROLONG is just
above 18% normalized to baseline. This is comparable with previous
state of the art 15% for PoLF and 29% WAD which are specialized
intra-set write reduction techniques. The reason behind such re-
duction in the existing techniques is that all these techniques try to
distribute the writes among the different ways of the set. There are
two main reasons for reducing the intra-set write variation by PRO-
LONG. First, it has been observed that the intra-set write variation
is high on the sets having more writes. Hence, bypassing writes
from heavily written sets also helps in reducing write variation
within the set. Second reason is based on an insight from PoLF [27].
The idea discussed in PoLF achieves significant improvement in
intra-set write variation by just invalidating random cache blocks.
Bypassing writes also means invalidating the existing block that
belongs to an heavily written set of the LLC. Hence, combining
these two important reasons, PROLONG also shows competitive
reduction (around 18%) in intra-set write variation.

The lifetime of a STT-RAM based LLC is dependant on the max-
imum write count of a single cache line. Bypassing writes from
heavily written sets not only reduces the total number writes per-
formed in the STT-RAM LLC but also reducing the maximum write
count. Hence, PROLONG performs less number of writes in the
LLC as compared to the other techniques. The existing techniques
sometimes even increase the number of writes because of invali-
dating important blocks from the LLC. These important blocks, the
blocks that are likely to be reused in the future, need to be fetched
from the main memory again, leading to more writes at the LLC.



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

Figure 6: Percentage Reduction in Inter-set WV in Single-core System (higher the better).

Figure 7: Percentage Reduction in Intra-set WV in Single-core System (higher the better).

Figure 8: Comparison of Normalized Total Write Count in single-core Systems (lower is better).

Missed important blocks can potentially lead to performance degra-
dation. However, in PROLONG, the write bypassing takes place
based on a liveness score of the block. The liveness score indicates
the possibility of the block being reused again in the near future.
Therefore, the possibility of bypassing an important block is less as
compared to the other state of the art. Figure 8 shows the compar-
ison in number of writes by different techniques as compared to
the baseline, i.e. Normalized Total Writes. It can be observed from
the figure that the reduction in writes is more in PROLONG where
in other techniques that do not employ write bypassing and the

writes are either more or equal to that of the baseline (LRU). Figure
8 depicts the various configurations of PROLONG with varying
degrees of aggressiveness (2-15%).

Figure 9 shows the improvements in lifetime over the baseline
by the various wear-levelling techniques considered. As mentioned
in Section 2.3, the lifetime depends on write variations and the
maximum number of writes in a cache line. PROLONG improves all
the three parameters as shown in Figure 6, 7 & 8. Therefore, Figure
9 shows significantly better lifetime than the other techniques. All
the other existing techniques can enhance the lifetime at maximum



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

Figure 9: Comparison of Normalized Lifetime in single-core Systems (higher the better).

Figure 10: Comparison of Normalized IPC in single-core Systems (higher the better).

Figure 11: Average Comparison of PROLONG in Single-core Systems with State of the art.

by 9𝑥 wheres PROLONG enhances it by nearly 22𝑥 , for the single-
core configuration. Here, the lifetime is calculated as the normalized
lifetime over baseline.

Impact on performance: While achieving significant improve-
ment in lifetime, PROLONG does not degrade (on an average) the



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

performance of the system. Normalized IPC is used as the metric to
show the various performance improvements as compared to the
other state of the art. Figure 10 shows that PROLONG matches the
performance of baseline and in some cases namely, bc, cc, pr, sssp,
gcc and sphinx, PROLONG achieves more than 10% performance
improvement over the baseline. The average improvement ranges
from 0-2%. The reason behind the improvement is because of by-
passing the less important blocks from the cache. As discussed in
Density [14], bypassing less important blocks reduces the conges-
tion in the read/write queue at the LLC and hence improves the
efficiency of the LLC. Because of lesser aggressive bypassing than
discussed in Density [14], PROLONG does not attain performance
improvements similar to Density. The other existing wear-leveling
techniques, PoLF, WAD, SWS and G-OAS(4) show a significant
drop in performance. Similar to PROLONG, SWWR and DWAWR
almost achieve baseline performance. This is the main benefit of
PROLONG as it improves the lifetime significantly as compared to
the existing techniques without degrading the performance.

Figure 12: Percentage Reduction in Inter-set WV for Multi-
core Systems (higher the better).

Figure 13: Percentage Reduction in Intra-set WV for Multi-
core Systems (higher the better).

Improvement analysis: Figure 11(a) shows the geomean re-
duction in terms of write variations both inter and intra-set write
variation as compared to the baseline and other state of the art
configurations. Figure 11(b) shows us the reduction in the total
write count of PROLONG that occurs due to write bypassing. It is
depicted as the percentage reduction in write count as compared to
baseline. Other wear levelling techniques show an increase in the
write count as compared to baseline. The number of writes may
increase but we see that the maximum write count does not due
to effective wear levelling. Figure 11(c) shows us how the lifetime
is effected effected by the various existing techniques considered
along with PROLONG. Figure 11(d) deals with the effect of the

state of the art on the performance calculated as Normalized IPC,
over baseline. The improvement shown in these figures are the
geometric mean values of all the workloads considered for study. It
can be observed that PROLONG reduces both inter-set and intra-
set write variation by almost 84% and 19% respectively. The write
count in existing techniques is more than the baseline wheres in
PROLONG it reduces because of its efficient bypassing. As the by-
pass aggressiveness of PROLONG increases, the reduction in write
count increases due to the bypassing of unimportant blocks. The
significant improvement in write variations reduction and write
count reduction makes PROLONG improve the lifetime as shown in
Figure 11(d). An important point to observe here is that the higher
the bypass aggressiveness, the higher the lifetime.

Figure 14: Normalized Lifetime w.r.t. baseline (LRU) for Mul-
ticore Systems (higher the better).

Figure 15: Normalized Total Writes w.r.t. baseline (LRU) for
Multicore Systems (lower is better).

Figure 16: Normalized IPC w.r.t. baseline (LRU) for Multicore
Systems (higher the better).

5.2 Multicore Analysis
Multicore experiments show the behaviour similar to single-core
experiments but in an amplified scale. Figure 12 and 13 show the
comparison of different wear-levelling techniques for reduction in
inter-set and intra-set write variations. The reduction of intra-set



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

variation by PROLONG is slightly less than single-core i.e. a maxi-
mum of 12%, while the inter-set write reduction is greater than the
single-core system nearly by 89%. For multicore setup, Figure 14
shows that PROLONG enhances the lifetime up to 35𝑥 . However,
a close observation shows that the enhancement is gradual and
similar to single-core forMix2. However,Mix1,Mix3 andMix4 PRO-
LONG shows a much higher enhancement. This occurs because of
extensive bypassing of writes that will not be accessed again in the
near future as these workloads have a major mix of read intensive
instructions and graph workloads. The write count in the LLC de-
creases drastically with increasing aggressiveness of bypassing as
depicted in Figure 15. Figure 16 shows the performance (Normal-
ized IPC) improvements over the baseline. It can be observed from
the figure that the performance of PROLONG is almost similar as
baseline. However, the performance of the existing wear levelling
techniques goes below the baseline.

5.3 Sensitivity Analysis
In this section we discuss about the various possible configurations
of PROLONG and reason the optimum configuration. For the analy-
sis of this section, PROLONG is considered with five different sizes
of SRAM buffer: 32KB, 64KB, 128KB, 256KB, and 512KB. For all the
earlier experiments we considered buffer size of 512KB. Each buffer
is divided into multiple parts of 32 entries just like a set-associative
cache such that the access time of the buffer can be reduced. Con-
sidering the latencies in Table 9, we perform experiments in this
section. For each buffer size, PROLONG considered four categories
of bypass aggressiveness: 2%, 5%, 10%, and 15%.

Table 9: The important hardware parameters of the SRAM
buffer used in PROLONG. The parameters are extracted from
CACTI [23].

Buffer
Size

Access
Latency

Static
Power

Dynamic
Energy
per Access

Area Con-
sumption

32KB 4.3ns 1.78nJ 19.44mW 6.1mm2

64KB 4.4ns 1.81nJ 33.16mW 6.55mm2

128KB 4.5ns 1.83nJ 60.74mW 7.4mm2

256KB 4.8ns 1.86nJ 110.21mW 8.9mm2

512KB 5.3ns 1.91nJ 168.65mW 10.45mm2

Figure 17 shows the improvement in PROLONG over baseline in
a single-core system. The improvements are shown for write varia-
tion, write count, lifetime and performance. It can be observed from
Figure 17(a) that the improvements in intra-set write variations are
almost similar with slight increments in reduction with increment
in buffer size. The inter-set write variations slightly varies over
different PROLONG configurations. However, the variations are
within 6%. Figure 17(b) shows that the number of writes in LLC
reduces with increase in bypass aggressiveness. A 512KB buffer
with 15% bypass aggressiveness depicts a 14% decrease in the over-
all write count. The change in normalized lifetime (as shown in
Figure 17(c)) over the different PROLONG configurations varies
up to 1.5𝑥 . The minimal lifetime improvement is only 17𝑥 while
the maximum is nearly 25𝑥 . Figure 17(d) shows that there is no

significant improvement in the performance with an increase in
the SRAM buffer size. The main reason behind this behaviour is the
high write latency of the larger SRAM buffers. The write latency
of the SRAM buffer increase slightly with its increasing size as
depicted in Table 9.

Hence, from the above discussion it can be concluded that a
PROLONG configuration with large SRAM buffer is not improving
noticeably. Furthermore, they have a larger hardware overhead
that make it an unattractive prospect. Buffer sizes that are small
are also not optimal as it lags behind in the lifetime improvement.
Therefore, buffer sizes that are in the middle like 128KB can provide
the best of both worlds with minimal hardware overhead and high
normalized lifetime for highly aggressive write bypassing is more
advisable. The results from multicore setup also reflects the similar
insights but in a more heightened sense.

5.4 Importance of SRAM buffer
In this section we discuss the importance of using an SRAM buffer
in PROLONG. Since the bypass aggressiveness that we used for
PROLONG is more than the aggressiveness used in Density [14],
there is a likelihood that PROLONG bypasses important blocks. The
buffer is used to store such blocks. Figure 18 shows the buffer hit
per LLC bypass. It can be observed from the figure that the hit rate
in buffer increases with increasing buffer size. This implies that the
larger the buffer it stores more important blocks with high proba-
bility of being reused again. As the bypass aggressiveness increases,
more loads are coming to the SRAM buffer and hence the hit rate is
also increasing. However, from the figure, it can be observed that
without the SRAM buffer there will be multiple request which need
to be served from main memory. Hence, the SRAM buffer plays an
important role from the performance perspective.

5.5 Comparison with other write bypassing
techniques

Write bypassing was originally used for reducing the number of
writes and enhancing the performance of STT-RAM LLC [14]. PRO-
LONG uses it for enhancing the LLC lifetime by reducing the write
variations and write counts. Figure 19 shows the connection be-
tween PROLONG and Density [14]. From the Figure 19 for single-
core systems it can be observed that PROLONG enhances the life-
time by 22𝑥 where in case of Density the lifetime enhancement is
almost negligible as compared to baseline. This is because, Den-
sity is designed to bypasses writes to reduce the congestion in
read/write queue. It even bypasses less important blocks through-
out the LLC. However, PROLONG does more aggressive bypass
only from some selective sets. On the other hand, Density shows
higher performance improvement over baseline as compared to
PROLONG as depicted in Figure 20.

5.6 Hardware Overhead and Energy
Consumption

Table 10 presents the total area overhead of PROLONG for a given
buffer size. Overhead comprises of write counters, WH bucket
counters, LSC apart from the buffer. Since the other hardware
components in PROLONG are almost same as baseline, the ad-
ditional energy consumed by PROLONG (𝐴𝐸𝑝𝑟𝑜 ) can be calculated



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

Figure 17: Comparison of different PROLONG configurations with baseline in a single-core environment. PRO(𝑥%) means the
bypass aggressiveness of PROLONG is 𝑥%. Each bypass aggressiveness value is experimented with 32KB, 64KB, 128KB, 256KB,
and 512KB of buffer size.

Figure 18: Buffer hit per write bypass in different configura-
tions of PROLONG (higher the better).

Figure 19: Comparison of Normalized Lifetime of PROLONG
with Density [14] (higher the better).

as 𝐴𝐸𝑝𝑟𝑜 = 𝐸𝑏𝑢𝑓 𝑓 − 𝐸𝑤𝑟𝑖𝑡𝑒 . Where 𝐸𝑏𝑢𝑓 𝑓 is the energy consumed
by the SRAM buffer and 𝐸𝑤𝑟𝑖𝑡𝑒 is the energy saved by reducing the
number of writes. We have used CACTI [23] to model the SRAM
buffer. Experimental analysis with all sizes of SRAM buffer found
that the value of𝐴𝐸𝑝𝑟𝑜 is always negative, implying that PROLONG

Figure 20: Comparison of Normalized IPC of PROLONG with
Density [14] (higher the better).

do not have any additional energy overhead with any buffer size
which is enough to get the benefit that we are expecting.

Table 10: Storage Overhead of Prolong.

Buffer Size Total Over-
head

Overhead over Base-
line

32KB 53KB 1.29%
64KB 85KB 2.08%
128KB 149KB 3.63%
256KB 277KB 6.76%
512KB 533KB 13.01%

5.7 Lifetime Comparison Analysis
Table 11 represents the Normalized Lifetime of various state of
the art techniques as compared with the different configurations
of PROLONG over various write intensive workloads from both
the SPEC-2006 benchmark suite and some write intensive graph



PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

workloads from the GAP benchmark suite. The lifetime values are
normalized over baseline that is the STT-RAM based LLC employ-
ing LRU replacement policy with no wear levelling policy. Here,
all the PROLONG configurations are set up with 512KB SRAM
buffer. The graph benchmarks generally depict a higher degree of
normalized lifetime up-to nearly 49𝑥 for PRO(15%). The highest
normalized lifetime in case of SPEC 2006 workloads is only up-to
40𝑥 for PRO(15%). Table 11 shows that the geometric mean normal-
ized lifetime for the state of the art is a maximum of 9𝑥 in case of
DWAWR, whereas PRO(15%) shows the largest geometric mean
normalized lifetime of 22.32𝑥 . A clear trend is visible in this Table 11
of increasing normalized lifetime with increasing degree of bypass
aggressiveness.

6 Related Works
The existing literature presents a variety of proposed techniques
for both inter-set and intra-set cache wear-leveling. We provide a
brief overview of these policies. Additionally, we delve into existing
inter-set cache wear-leveling techniques and a few proposed write
bypassing techniques. Some hybrid caches were also introduced
for the purpose of increasing the lifetime of the NVM based LLC’s.

EqualChance, as reported by Mittal et al. [19], employs a strategy
of transferring or swapping blocks within the cache set which are
write-intensive, with invalid or clean blocks. The process is gov-
erned by a write counter threshold. However, this transfer or swap
operation entails additional cycles and higher energy consumption,
primarily due to the increased number of writes occurring within
LLC. Mittal et al. [21] proposed LastingNVCache an intra-set write
variation reduction technique that assigns a write counter for each
block in the cache. When the counter value surpasses a predefined
threshold, the new write on that block is bypassed. Mittal et al. [18]
proposed a color mapping modification technique for reduction in
inter-set write variation. Agarwal et al. [1] proposes a technique
which divides sets into groups and a set in each group has both
a normal part and a reserved part. Sets in a group are allowed to
share the reserved part with those sets in the same group such that
there is uniform distribution of writes. Wang et al. [26] proposed an
Obstruction-Aware Cache Management Policy for STT-RAM Last-
Level Caches (OAP). OAP focuses on periodic cache monitoring for
the obstructive processes and then manages them accordingly.

A lot of hybrid cache techniques have been proposed over the
years that comprises of both SRAM and NVM part. They aim to
make the NVM part read intensive and the SRAM write intensive.
Ayush proposed by Mittal et al. [20] is responsible for reduction
in write variation because of block wise data movements among
the different areas of the cache. Write migration happens to the
SRAM part of the cache and read intensive blocks are stored in
the NVM area. Lin et al. [17] proposed two access aware policies
that were responsible to handle unbalanced STT-RAM wear-out
and a partitioning scheme which is dynamic and depends on the
wear-out. Wu et al. [31] highlights the use of different memory
technologies at different cache levels and at the same level of cache
with the help of which they have been able to achieve a bit of
performance improvement but a high level of power reduction.
HALLS [15] is a highly adaptable system that configures the best
type of LLC based on the type of applications that are needed to be

executed. Li et al. [16] proposed a Dual Associative Hybrid Cache
(DAHYC) and their respective replacement policies which targeted
having SRAM blocks along with NVM blocks in the same set of a
cache. The replacement policy helps in managing the placement of
the incoming write blocks in the volatile SRAM part or the NVM
part efficiently. Wu et al. [32] proposed two different techniques
where the on-chip cache hierarchy were made up of different type
of memory technologies in different levels of the cache, i.e. Level
based Hybrid Cache Architecture (LHCA) and also in the same level
of the cache, i.e. Region based Hybrid Cache Architecture (RHCA).

There has been various other techniques that aim at improving
lifetime. Wang et al. [28] proposed a unique solution where the
cache has been partitioned into two and to balance the writes
into those partitions they swap the two partitions based on the
type of applications dynamically. The read intensive blocks will
be positioned in the STT-RAM portion while the write intensive
blocks will be positioned in the SRAM portion. They had proposed
hardware based partitioning and software based partitioning as
well. Saraf et al. [25] proposed a refresh aware replacement policy
for write optimized STT-RAM’s. They targeted those blocks to
replace that were about to be invalidated instead of the recently
refreshed block.

Write Bypassing techniques have been used in STT-RAM LLC
in order to increase the cache performance and also to reduce the
power consumption. Dybdahl et al. [5] initially proposed a write
bypassing technique for LLC performance improvement. They iden-
tify the potential misses early and tend to bypass only those blocks.
Zhang et al. [33] proposed a statistics based write bypassing tech-
nique (SBAC) which is based on the stats of the whole cache and
instead of depending of only a single cache line. Kim et al. [12] pro-
posed a inclusive bypass tag cache (IBTC) for NVM’s. This method
was presented to implement proper cache coherence for inclusive
caches. Density proposed by Korgaonkar et al. [14] highlighted
a reuse based cache bypassing technique that assigns a priority
to any incoming block. This is helped through determining their
liveness score which is important in determining weather a write-
back to a LLC from the L2 cache is having the chance to be reused
again in the near future. Wang et al. [29] proposed an adaptive LLC
write bypassing technique for hybrid STT-RAM’s which focuses
on movement, bypassing and data placement based on the type of
predetermined incoming write. Bagchi et. al [3] recently proposed,
Performance Optimization and Endurance Management for Non-
volatile Caches (POEM) which aimed at aggressively bypassing
both write backs from the upper level cache and writes from the
main memory while redistributing the remaining writes evenly
among the cache lines. This not only helped them in gaining a
significant improvement in performance but also helped with wear
levelling and thereby enhancing the lifetime of the NVM based
LLC.

7 Conclusion
Through our work we have highlighted the need for STT-RAM
LLC’s over SRAM based LLC’s, but implementing purely STT-RAM
LLC’s come with their own set of issues like performance degra-
dation and lifetime. Therefore, we propose PROLONG which is an
innovative, power efficient and cost effective architecture that aims



MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das, and Venkata Kalyan Tavva

Table 11: Normalized Lifetime of Write Intensive Workloads.

Workloads PoLF WAD SWS G-OAS(4) SWWR DWAWR Pro(2%) Pro(5%) Pro(10%) Pro(15%)
GAP
bc 2.75 4.04 5.52 5.22 7.65 9.06 26.23 26.87 29.29 31.11
bfs 1.22 11.04 12.54 12.16 5.40 11.41 8.14 9.21 11.41 12.93
cc 1.39 4.89 6.41 6.10 6.10 9.28 26.74 28.07 30.82 32.73
pr 0.23 3.26 4.62 4.31 4.43 7.13 43.66 44.25 47.05 48.93
sssp 2.04 5.11 6.71 6.38 6.38 5.74 30.60 32.08 34.62 36.72

SPEC-2006
cactus 6.45 6.45 7.84 7.84 3.77 13.79 10.00 12.24 14.58 16.20
gcc 2.81 3.39 5.17 4.57 3.39 6.40 10.24 12.27 15.09 16.56
Gems 2.61 1.41 2.85 2.61 3.59 13.35 5.61 6.39 8.52 9.90
lbm 1.52 5.95 7.44 7.01 4.30 14.10 6.59 7.23 9.43 11.02

leslie3d 0.87 2.21 3.58 3.35 6.68 8.43 16.04 16.92 19.33 20.89
libquantum 3.62 8.13 9.58 9.37 3.25 12.82 7.12 7.92 10.00 11.50

mcf 1.86 5.48 6.93 6.55 8.82 10.11 29.91 30.48 33.06 34.76
milc 4.81 3.43 4.81 4.53 6.52 8.49 34.71 35.33 38.03 39.83
soplex 1.96 1.56 2.97 2.77 0.78 5.69 22.07 22.93 25.30 27.14
sphinx 2.24 0.95 2.56 2.24 5.96 8.11 16.79 18.08 20.75 22.61
wrf 4.90 5.94 8.08 7.00 4.90 15.05 15.05 18.89 21.59 24.42

xalancbmk 1.25 3.05 4.52 4.11 4.11 13.76 30.43 31.28 33.88 35.68
zeusmp 2.27 4.65 7.14 5.88 5.88 3.45 7.14 11.11 13.92 15.38

Geomean All 2.00 3.80 5.57 5.16 4.63 9.14 15.88 17.62 20.43 22.32

at reducing the inter-set write variation and improve the lifetime
of the STT-RAM LLC drastically without compromising on the
performance of the system. Overall we have achieved a 89% reduc-
tion in inter-set write variation and 35 times lifetime improvement
with a 0-2% improvement in performance for multicore systems.
Therefore, PROLONG becomes a practical alternative to the tradi-
tional SRAM based LLC architectures as it can provide both the
performance needed and also the required lifetime to implement
an STT-RAM based LLC.

Acknowledgement
This work was supported in part by 2022 Qualcomm Faculty Award.
The authors sincerely appreciate the valuable feedback and com-
ments provided by our anonymous reviewers. We are also thankful
to the members of CA-SIG Lab of IIT Ropar for all the helpful
discussions and valuable feedback.

References
[1] Sukarn Agarwal and Hemangee K. Kapoor. 2017. Targeting inter set write

variation to improve the lifetime of non-volatile cache using fellow sets. In 2017
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). 1–6.
https://doi.org/10.1109/VLSI-SoC.2017.8203453

[2] Sukarn Agarwal and Hemangee K. Kapoor. 2019. Improving the Lifetime of Non-
Volatile Cache by Write Restriction. IEEE Trans. Comput. 68, 9 (2019), 1297–1312.
https://doi.org/10.1109/TC.2019.2892424

[3] Aritra Bagchi, Dharamjeet, Ohm Rishabh, Manan Suri, and Preeti Ranjan Panda.
2024. POEM: Performance Optimization and Endurance Management for Non-
volatile Caches. ACM Trans. Des. Autom. Electron. Syst. (mar 2024). https:
//doi.org/10.1145/3653452 Just Accepted.

[4] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[5] Haakon Dybdahl and Per Stenström. 2006. Enhancing Last-Level Cache Per-
formance by Block Bypassing and Early Miss Determination. In Advances in
Computer Systems Architecture, Chris Jesshope and Colin Egan (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 52–66.

[6] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator: Ar-
chitectural Simulation for Education and Competition. arXiv:2210.14324 [cs.AR]

[7] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. SIGARCH
Comput. Archit. News 34, 4 (sep 2006), 1–17. https://doi.org/10.1145/1186736.
1186737

[8] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykrishnan Narayanan, Ravis-
hankar Iyer, and Chita R. Das. 2012. Cache revive: Architecting volatile STT-RAM
caches for enhanced performance in CMPs. InDACDesign Automation Conference
2012. 243–252. https://doi.org/10.1145/2228360.2228406

[9] Mohammad Reza Jokar, Mohammad Arjomand, and Hamid Sarbazi-Azad. 2016.
Sequoia: A High-Endurance NVM-Based Cache Architecture. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 24, 3 (2016), 954–967. https:
//doi.org/10.1109/TVLSI.2015.2420954

[10] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and
Yuan Xie. 2010. Energy- and endurance-aware design of phase change memory
caches. In 2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). 136–141. https://doi.org/10.1109/DATE.2010.5457221

[11] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010. Sampling
Dead Block Prediction for Last-Level Caches. In Proceedings of the 2010 43rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’43).
IEEE Computer Society, USA, 175–186. https://doi.org/10.1109/MICRO.2010.24

[12] Min Kyu Kim, Ju Hee Choi, Jong Wook Kwak, Seong Tae Jhang, and Chu Shik
Jhon. 2015. Bypassing method for STT-RAM based inclusive last-level cache. In
Proceedings of the 2015 Conference on Research in Adaptive and Convergent Systems
(Prague, Czech Republic) (RACS ’15). Association for Computing Machinery, New
York, NY, USA, 424–429. https://doi.org/10.1145/2811411.2811512

[13] Young-Bae Kim, Seung Ryul Lee, Dongsoo Lee, Chang Bum Lee, Man Chang,
Ji Hyun Hur, Myoung-Jae Lee, Gyeong-Su Park, Chang Jung Kim, U-In Chung, In-
Kyeong Yoo, and Kinam Kim. 2011. Bi-layered RRAM with unlimited endurance
and extremely uniform switching. In 2011 Symposium on VLSI Technology - Digest
of Technical Papers. 52–53.

[14] Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, SasikanthManipatruni,
Sreenivas Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and Hong
Wang. 2018. Density Tradeoffs of Non-Volatile Memory as a Replacement for
SRAM Based Last Level Cache. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 315–327. https://doi.org/10.1109/
ISCA.2018.00035

[15] Kyle Kuan and Tosiron Adegbija. 2019. HALLS: An Energy-Efficient Highly
Adaptable Last Level STT-RAMCache for Multicore Systems. IEEE Trans. Comput.
68, 11 (nov 2019), 1623–1634. https://doi.org/10.1109/TC.2019.2918153

https://doi.org/10.1109/VLSI-SoC.2017.8203453
https://doi.org/10.1109/TC.2019.2892424
https://doi.org/10.1145/3653452
https://doi.org/10.1145/3653452
https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/2210.14324
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/2228360.2228406
https://doi.org/10.1109/TVLSI.2015.2420954
https://doi.org/10.1109/TVLSI.2015.2420954
https://doi.org/10.1109/DATE.2010.5457221
https://doi.org/10.1109/MICRO.2010.24
https://doi.org/10.1145/2811411.2811512
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/ISCA.2018.00035
https://doi.org/10.1109/TC.2019.2918153


PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC MEMSYS ’24, Sept 30 – 3 Oct, 2024, Washington D.C

[16] Jianhua Li, Liang Shi, Chun Jason Xue, Chengmo Yang, and Yinlong Xu. 2011.
Exploiting set-level write non-uniformity for energy-efficient NVM-based hybrid
cache. In 2011 9th IEEE Symposium on Embedded Systems for Real-TimeMultimedia.
19–28. https://doi.org/10.1109/ESTIMedia.2011.6088521

[17] Ing-Chao Lin and Jeng-Nian Chiou. 2015. High-Endurance Hybrid Cache Design
in CMP Architecture With Cache Partitioning and Access-Aware Policies. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 10 (2015), 2149–
2161. https://doi.org/10.1109/TVLSI.2014.2361150

[18] Sparsh Mittal. 2013. Using Cache-coloring to Mitigate Inter-set Write Variation
in Non-volatile Caches. arXiv:1310.8494 [cs.AR]

[19] Sparsh Mittal and Jeffrey S. Vetter. 2014. EqualChance: Addressing Intra-set
Write Variation to Increase Lifetime of Non-volatile Caches. In 2nd Workshop
on Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW
14). USENIX Association, Broomfield, CO. https://www.usenix.org/conference/
inflow14/workshop-program/presentation/mittal

[20] Sparsh Mittal and Jeffrey S. Vetter. 2015. AYUSH: Extending Lifetime of SRAM-
NVM Way-Based Hybrid Caches Using Wear-Leveling. In Proceedings of the
2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS ’15). IEEE Computer
Society, USA, 112–121. https://doi.org/10.1109/MASCOTS.2015.29

[21] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. 2014. LastingNVCache: A Technique
for Improving the Lifetime of Non-volatile Caches. In 2014 IEEE Computer Society
Annual Symposium on VLSI. 534–540. https://doi.org/10.1109/ISVLSI.2014.69

[22] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. 2015. A Survey Of Architectural
Approaches for Managing Embedded DRAM and Non-Volatile On-Chip Caches.
IEEE Transactions on Parallel and Distributed Systems 26, 6 (2015), 1524–1537.
https://doi.org/10.1109/TPDS.2014.2324563

[23] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 40). 3–14.

[24] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011. Phase
change memory: From devices to systems. 1–134. https://doi.org/10.2200/
S00381ED1V01Y201109CAC018

[25] Puneet Saraf and Madhu Mutyam. 2019. Endurance enhancement of write-
optimized STT-RAM caches. In Proceedings of the International Symposium on
Memory Systems (Washington, District of Columbia, USA) (MEMSYS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 101–113. https:
//doi.org/10.1145/3357526.3357538

[26] Jue Wang, Xiangyu Dong, and Yuan Xie. 2013. OAP: An obstruction-aware cache
management policy for STT-RAM last-level caches. In 2013 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 847–852. https://doi.org/10.
7873/DATE.2013.179

[27] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P. Jouppi. 2013. i2WAP: Improv-
ing non-volatile cache lifetime by reducing inter- and intra-set write variations.
In 2013 IEEE 19th International Symposium on High Performance Computer Archi-
tecture (HPCA). 234–245. https://doi.org/10.1109/HPCA.2013.6522322

[28] Shuai Wang, Guangshan Duan, Yupeng Li, and Qianhao Dong. 2017. Word- and
Partition-Level Write Variation Reduction for Improving Non-Volatile Cache
Lifetime. ACM Trans. Des. Autom. Electron. Syst. 23, 1, Article 4 (aug 2017),
18 pages. https://doi.org/10.1145/3084690

[29] Zhe Wang, Daniel A. Jiménez, Cong Xu, Guangyu Sun, and Yuan Xie. 2014. Adap-
tive placement and migration policy for an STT-RAM-based hybrid cache. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 13–24. https://doi.org/10.1109/HPCA.2014.6835933

[30] H.-S. P. Wong, C. Ahn, M. Beauchamp, J. Cao, H.-Y. Chen, W. C. Chen, S. B.
Eryilmaz, S. W. Fong, W. Hwang, J. A. Incorvia, R. Islam, Z. Jiang, H. Li, S. Liu,
C. Neumann, K. Okabe, S. Qin, Y. C. Shen, M. Shi, J. Sohn, M. Tung, W. Wan, X.
Wu, Y. Wu, S. Yu, Z. Yu, and X. Zheng. Accessed June 6, 2022. Stanford Memory
Trends. https://nano.stanford.edu/stanford-memory-trends.

[31] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie.
2009. Hybrid cache architecture with disparate memory technologies. In Pro-
ceedings of the 36th Annual International Symposium on Computer Architecture
(Austin, TX, USA) (ISCA ’09). Association for Computing Machinery, New York,
NY, USA, 34–45. https://doi.org/10.1145/1555754.1555761

[32] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie.
2009. Hybrid cache architecture with disparate memory technologies. SIGARCH
Comput. Archit. News 37, 3 (jun 2009), 34–45. https://doi.org/10.1145/1555815.
1555761

[33] Chao Zhang, Guangyu Sun, Peng Li, Tao Wang, Dimin Niu, and Yiran Chen. 2014.
SBAC: A statistics based cache bypassing method for asymmetric-access caches.
In 2014 IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED). 345–350. https://doi.org/10.1145/2627369.2627611

[34] Lijie Zhang, Yen-Ya Hsu, Frederick T Chen, Heng-Yuan Lee, Yu-Sheng Chen,
Wei-Su Chen, Pei-Yi Gu, Wen-Hsing Liu, Shun-Min Wang, Chen-Han Tsai, Ru
Huang, and Ming-Jinn Tsai. 2011. Experimental investigation of the reliability
issue of RRAM based on high resistance state conduction. Nanotechnology 22, 25
(may 2011), 254016. https://doi.org/10.1088/0957-4484/22/25/254016

https://doi.org/10.1109/ESTIMedia.2011.6088521
https://doi.org/10.1109/TVLSI.2014.2361150
https://arxiv.org/abs/1310.8494
https://www.usenix.org/conference/inflow14/workshop-program/presentation/mittal
https://www.usenix.org/conference/inflow14/workshop-program/presentation/mittal
https://doi.org/10.1109/MASCOTS.2015.29
https://doi.org/10.1109/ISVLSI.2014.69
https://doi.org/10.1109/TPDS.2014.2324563
https://doi.org/10.2200/S00381ED1V01Y201109CAC018
https://doi.org/10.2200/S00381ED1V01Y201109CAC018
https://doi.org/10.1145/3357526.3357538
https://doi.org/10.1145/3357526.3357538
https://doi.org/10.7873/DATE.2013.179
https://doi.org/10.7873/DATE.2013.179
https://doi.org/10.1109/HPCA.2013.6522322
https://doi.org/10.1145/3084690
https://doi.org/10.1109/HPCA.2014.6835933
https://nano.stanford.edu/stanford-memory-trends
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555815.1555761
https://doi.org/10.1145/1555815.1555761
https://doi.org/10.1145/2627369.2627611
https://doi.org/10.1088/0957-4484/22/25/254016

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 STT-RAM Cell
	2.2 STT-RAM based LLC (STT-RAM LLC)
	2.3 Write Variation and Lifetime
	2.4 Motivation

	3 PROLONG: The Proposed Work
	3.1 Proposed Architecture
	3.2 Working of PROLONG
	3.3 PROLONG Algorithm

	4 Experimental Setup
	4.1 Simulator Setup
	4.2 Workloads

	5 Results Analysis
	5.1 Single-core analysis
	5.2 Multicore Analysis
	5.3 Sensitivity Analysis
	5.4 Importance of SRAM buffer
	5.5 Comparison with other write bypassing techniques
	5.6 Hardware Overhead and Energy Consumption
	5.7 Lifetime Comparison Analysis

	6 Related Works
	7 Conclusion
	References

