
Hybrid Cache Design Under Varying Power Supply Stability –
A Comparative Study

Nils Wilbert, Stefan Wildermann, Jürgen Teich
{nils.wilbert,stefan.wildermann,juergen.teich}@fau.de

FAU Erlangen-Nürnberg
Erlangen, Germany

ABSTRACT
As emerging Non-Volatile Memory (NVM) technologies are ever
maturing, the usage of such novel memory technologies in em-
bedded systems is becoming increasingly viable. Especially when
introduced at the cache level, these technologies can promise great
advantages over conventional SRAM technology as they can serve
read requests at lower energy and, in applications of intermittent
computing, reduce the backup overhead during a power outage.
Nevertheless, write accesses to NVMs consume more energy com-
pared to writing to a conventional SRAM. As a remedy, hybrid
caches, introducing both NVM and SRAM to the cache hierar-
chy, can realize trade-offs by minimizing the expected NVM write
overhead while still exploiting the NVM read efficiency and non-
volatility property. However, these hybrid designs open up a num-
ber of additional decisions in the design space, which are examined
in this paper. Most notably, the choice of the degree of non-volatility
introduced to the cache hierarchy in addition to the choice of a
suitable cache replacement policy has not been analyzed and solved
systematically yet. By employing simulation-based experiments, we
evaluate embedded applications featuring various memory access
patterns under both continuous and intermittent power supplies
for different types of hybrid cache designs. Our results show how
the combination of application and architecture characteristics, in
addition to the expected power supply stability, leads to a vast
range of hard-to-predict cache effects affecting both performance
and energy efficiency. Both the potential and a necessity for auto-
mated design tools, including the exploration of hybrid memory
hierarchies, therefore arise.

CCS CONCEPTS
• Computer systems organization → Embedded hardware; •
Hardware → Emerging architectures.

KEYWORDS
NVM, Embedded Systems, Hybrid Cache, Memory Hierarchy, In-
termittent Computing, System Design

1 INTRODUCTION
As battery-less Internet of Things (IoT) devices relying on energy
harvesting are increasingly finding their way into our everyday
lives in the form of wearables, smart buildings, healthcare, etc.,
the memory hierarchy design of such systems is also becoming
increasingly relevant. As for devices, e.g., powered by solar panels,
power outages can be expected frequently, the field of intermit-
tent computing [15, 28] needs to be considered for such systems.
More precisely, during a power outage, all contents of a volatile

memory are lost, unless moved to a non-volatile memory in a trig-
gered backup process powered by, e.g., additional capacitors [18].
With NVM technologies such as Phase-Change RAM (PCRAM) or
Spin-Transfer Torque RAM (STT-RAM) having matured enough to
become commercially viable [1, 17], they can provide a solution
for intermittently powered devices in order to reduce the worst-
case backup overhead. STT-RAM in particular has already been
identified as a suitble technology for the implementation of caches
[27, 29]. However, the introduction of NVM is expected to gener-
ate additional overhead compared to conventional SRAM in terms
of both write latencies and required write energy consumption.
A completely non-volatile cache hierarchy or even Non-Volatile
Processors (NVPs) [16, 26] are thus not always feasible. Therefore,
hybrid caches combining both volatile and non-volatile technolo-
gies, thus realizing a trade-off, have already been identified as a
field of research [2, 12, 24, 29]. However, the hybridization of caches
leads to an increase in the size of the design space, including but not
limited to the degree to which non-volatility should be introduced.
Additionally, the choice of a suitable cache replacement policy is
becoming more complex as, for hybrid caches, a need for adapted
replacement policies arises. While replacement policies are a key
factor in overall cache performance, conventional policies such as
LRU do not consider the different characteristics of the underlying
memory technologies in their decisions. More precisely, due to the
aforementioned NVM write overhead, architecture-aware replace-
ment policies should generally avoid placing write-intensive data
in the non-volatile section of a hybrid cache. As furthermore only
a few existing replacement policies exist to support intermittent
computing, it is of great interest to investigate and analyze how the
degree of non-volatility and the choice of cache replacement policy
influence performance depending on the application running on the
device and the expected stability of the power supply. To the best of
our knowledge, this paper is the first to treat all the above factors
together in a comparative analysis to raise awareness for trade-off
cache designs and respective replacement policies. We thus under-
line the importance of automated design tools for domain and/or
even application-specific hybrid cache hierarchies.

The paper is structured as follows: First, in Section 2 we present
related work to our topic and outline our key contributions. In
Section 3, we present a number of concepts and design decisions
regarding the design of hybrid caches. Section 4 contains a more
thorough explanation of the architecture-aware cache replacement
policies investigated in this paper. Finally, after presenting our
experimental setup in Section 5, we discuss the results under stable
and intermittent power supplies in Sections 6 and 7, respectively.
Concluding notes are provided in Section 8.

Nils Wilbert, Stefan Wildermann, Jürgen Teich

2 RELATEDWORK AND CONTRIBUTIONS
One of the earliest works investigating the potential of hybrid
caches is provided by [29]. Here, a cache replacement policy for
caches featuring a volatile and non-volatile section in each cache set,
with access-based placement decisions and a migration mechanism
in case the currently observed access pattern is more efficiently
served in the opposing cache section, is presented. More sophisti-
cated replacement policies featuring, e.g., prediction mechanisms in
order to avoid placing write-intensive data to a non-volatile cache
section are introduced in a number of later works, such as [2, 14, 21].
Most of these approaches focus on exploiting NVM’s high density
in order to realize large last-level caches.

The topic of designing hybrid memory hierarchies for the pur-
pose of intermittent computing, thus exploiting the non-volatility
property itself, is also an active field of research. While approaches
such as [4, 20, 23] already focus on using NVM in order to realize
efficient checkpointing, i.e., saving the current system state to NVM
at specific points in time, they do not consider the hybridization tak-
ing place within explicit levels of the memory hierarchy themselves.
More recent works, consider the potential of hybrid caches in the
field of intermittent computing more closely by providing their
own cache policies designed to deal with power outages [3, 30].

Regarding Design Space Exploration (DSE) tools for hybrid mem-
ory hierarchies, in [22], a machine-learning-based method is pro-
posed. However, this approach solely focuses on the design of
hybrid main memories in addition to not considering the field of in-
termittent computing. While intermittent computing is introduced
for MemCork [25], caches are again not included in the analysis.
Whereas HyCSim [9] promises a lightweight simulation framework
for the purpose of exploring hybrid last-level caches, it cannot yet
provide an automated DSE on its own, in addition to not including
the possibility of power outages in its approach. Therefore, to our
knowledge, there are currently no automated DSE tools considering
hybrid memories on all levels of the hierarchy, including caches and
their various policies, while also offering support for intermittent
computing.

Taking a first step towards such design tools, our main contribu-
tions of this paper are listed in the following:

• Creation of a modular, flexible simulation framework for
hybrid cache designs, including intermittent power sup-
plies.

• Comparative study of hybrid cache designs carrying differ-
ent degrees of non-volatility and different cache replace-
ment policies under both stable and unstable power sup-
plies.

• Analyzing the interaction of application and architecture
characteristics in hybrid cache designs.

• Demonstrating the need and potential for automated de-
sign tools for hybrid memory hierarchies in the field of
intermittent computing.

3 DESIGN DECISIONS FOR HYBRID CACHES
In this section, we outline a number of design decisions specific to
the concept of hybrid memory hierarchies. For the rest of this paper,
we assume write-back caches, as write-through caches generate a
significant amount of additional writes unsuitable for NVM.

3.1 Degree of Non-Volatility
One of the most crucial decision in the design space of hybrid mem-
ory hierarchies lies in the degree to which non-volatility should be
introduced at each level of the memory hierarchy. While design-
ing efficient hybridized main memories is possible [7], it proves
unsuitable for intermittent computing as volatile main memory con-
tents would have to be saved to an additional non-volatile backup
storage, e.g., an additional flash memory. Especially for smaller
embedded devices, such as Microcontroller Units (MCUs) this addi-
tional overhead is often not acceptable. A completely non-volatile
main memory is thus assumed for the rest of this paper.

Regarding the cache hierarchy, for the hybridization at a single
cache level, we split each cache set into volatile and non-volatile
ways, with the concrete ratio being subject to configuration. The
mapping between data and cache sets is determined statically and
does not change over the time of execution. Furthermore, data
mapped to the same cache set can vary in their write intensity.
Additionally, access patterns to the same data are subject to change
over the time of execution. In a hybrid cache set, NVM writes
can therefore be avoided while still being able to exploit NVM
reads and the non-volatility property. This leads to cache policies
having to make a decision regarding the cache section on placement,
as well as being offered the possibility to support the migration
of data between cache sections. Note that in our case, the ratio
of non-volatile cache lines in a cache set is the same for all sets
at the observed cache level. A more complex approach could be
implemented by applying different degrees of non-volatility to each
cache set individually. This can be beneficial for applications where
certain address regions are considered to be highly write-intensive,
while others, mainly mapped to different cache sets, are rather read-
intensive. However, this requires deep insight and analysis into
application access patterns and creates a more complex hardware
design since, for instance, connections between physical cache lines
and comparators cannot be drawn symmetrically for each cache
set. This approach of an uneven distribution of non-volatile cache
lines is therefore not considered further in this paper.

After a power outage, we want to maintain the validity of a non-
volatile cache line, as well as ensure that a volatile cache line is not
erroneously treated as valid. The tag array with the corresponding
cache flags (i.e., valid bit, dirty bit) thus has to be hybridized in
the same fashion as the data array, meaning the volatility of the
corresponding tag and data array entries should always match. An
examplary overview of the examined memory hierarchies can be
seen in Figure 1.

With regard to a multi-level cache hierarchy, the size of the
design space further increases, as the degree of non-volatility can
be set individually for each cache in the hierarchy. However, em-
ploying multiple hybrid caches comes with additional challenges
for intermittent computing concerning cache inclusivity. To pro-
vide an example, consider the data � being stored in a non-volatile
cache line in the L1 cache whilst being stored in a volatile L2 cache
line. Upon a power failure, a writeback for � in the non-volatile
L1 cache does not have to be initiated, whereas in the volatile L2
cache, � is written back to the next lower hierarchy in case it is
modified as it will get lost from the L2 cache afterwards. While
cache coherence protocols guarantee that the L2 cache did not

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

Main
Memory

Cache

CPU

BackupCapacitor

BackupCapacitor

Arbitrary Set from
4-Way Associative Cache

|V| |D| Tag |Data|

Volatile

Non-Volatile

Figure 1: Example of a hybrid memory hierarchy, featuring
a non-volatile main memory and a hybrid cache with an
exemplary cache set shown on the right explaining the hy-
bridization at cache set level. Valid and dirty bits are denoted
as ”V” and ”D”, with volatile and non-volatile components
shown in red and blue, respectively. The direction of the
backup process necessary upon power outages with the re-
quired backup capacitors is further displayed.

provide a more recent version of � than the L1 cache, the cache
inclusivity might be violated as for inclusive caches, data can only
exist in an upper-level memory in case a copy of it is contained
in all lower-level memories. Therefore, for our example, the cache
inclusion policy has to be triggered during power outages even
for � being unmodified, thus initiating a writeback and evicting
� from the L1 cache, instead of simply dropping � from the L2
cache. This behavior is further visualised in Figure 2. This greatly
diminishes the benefits of NVM, since for inclusive caches, even
data stored in a non-volatile section are no longer guaranteed to
withstand a power outage without generating additional backup
overhead. However, even for non-inclusive caches, a writeback can
still be required for a non-volatile cache line during power outages.
Consider the modified data � in a volatile L1 cache whose tag is
not contained in a fully non-volatile L2 cache. When backing up
� from the L1 cache, a victim � is thus chosen in the L2 cache.
In case � is also modified, this leads to an additional writeback,
as the evicted data � from the L2 cache has to be written back to
the next lower level of the memory hierarchy. This cannot occur
in inclusive caches, as there will always be a cache line in the L2
cache containing an earlier version of �, thus not requiring an ad-
ditional writeback when backing up the L1 cache. Therefore, even
the cache inclusion policy has to be considered when designing a
hybrid memory hierarchy. For this paper, the role of the inclusion
policy can be neglected, as we restrict our experiments to designs
featuring a single cache level.

L1 Cache

Vol V Data

1 1 …

0 1 A

L2 Cache

Vol V Data

1 0 …

1 1 A

0 0 …

0 1 …

Vol V Data

1 0 …

0 1 A

Vol V Data

1 0 …

1 0 …

0 0 …

0 1 …

Power
Outage

Figure 2: Example how for hybrid memory hierarchies, the
inclusion policy for data ”A” can be violated in case of a
power outage. The ”Vol” field indicates whether a cache line
is volatile (1) or not (0). The valid bit is denoted as ”V”.

3.2 Power Outage Behavior
The approach chosen in this paper for saving the system state is
based on approaches such as Hibernus [4]. Here, instead of relying
on checkpoints set within the application, the system dynamically
reacts to power failures by detecting that the supply voltage drops
below a threshold and then saving the current execution state and
all volatile data to a non-volatile memory. After regaining power,
the execution can thus continue where it was halted. More precisely,
in our case, the backup steps are performed sequentially along the
memory hierarchy starting at the CPU side. First, the CPU is blocked
for any new intruction fetches, while executing all currently issued
instructions to completion. Even a pipelined out-of-order CPU is
thus stopped leaving behind a consistent state. Afterwards, the
CPU registers containing, e.g., the Program Counter (PC) have to
be saved. For our case, a backup to non-volatile shadow registers
can be assumed, allowing the register saving to be parallelized
with the backup of modified volatile cache lines. Starting at the
cache closest to the CPU, we first have to wait until all outstanding
requests are completed. Despite an already drained CPU pipeline,
this is still relevant, as, for instance, a request to write back the
result of an instruction otherwise completed and thus no longer in
the pipeline can still have caused a cache miss yet to be handled.
Afterwards, the necessary writebacks can be issued. Evidently, a
writeback has to be performed for all modified data stored in a
volatile cache line. Once all writebacks at this level of the cache
hierarchy have been performed, we can eventually move on to the
next cache level. Since, as established in Section 3.1, in our case,

Nils Wilbert, Stefan Wildermann, Jürgen Teich

the main memory is assumed to be non-volatile, it does not require
any special handling. After harvesting enough energy to resume
the execution, i.e., having harvested enough energy in order to deal
with a potential successive power outage, the program can simply
continue at the next instruction as indicated by the backed-up PC.

In battery-less devices, this process can be powered by a capacitor
whose remaining energy is large enough to adhere to the worst
case, where all cache lines are modified [15]. The lower the required
energy to save the system state in the worst case, the smaller the
device’s capacitor can therefore be scaled while achieving the same
amount of factual progress. Furthermore, the remaining energy the
system has to provide to deal with a power outage in the worst case
is thus determined by the architecture itself rather than the cache
replacement policy or the expected power outage frequency.

3.3 Volatility of Replacement Policy Metadata
An open question when designing hybrid caches fit for intermittent
computing lies in the behavior of the cache replacement policies
during power outages. While there may be a number of possibili-
ties regarding the implementation, almost all known replacement
policies require some type of metadata for their victim selection,
e.g., counters, time stamps, queues, etc. For a volatile cache, the
technology chosen for the storage of this metainformation is not
of concern, as all cache lines are invalid after a power outage. How-
ever, for a hybrid cache where non-volatile cache lines remain valid
after a power outage, this decision is becoming part of the design
space. For the first example, consider an idealized LRU strategy
implemented by adding a time stamp to each cache line, indicating
when a cache line was last accessed. On the one hand, as this time
stamp is written on every access to the corresponding cache line,
storing the metadata in NVM can lead to significant write overhead.
On the other hand, keeping all LRU metainformation in a volatile
state can result in poor replacement decisions after a power out-
age. Depending on the concrete implementation, valid non-volatile
cache lines might even be selected as victims, despite invalid volatile
cache lines being available. Inversely, as replacement policies are
merely heuristics, losing their metadata can arguably also be seen
as a chance to counter mispredictions regarding suitable replace-
ment candidates. For LRU, a hybridization of the metadata in line
with the tag and data arrays can be seen as a potential solution, as
volatile cache lines become invalid after a power outage and thus
do not benefit from non-volatile metadata. However, the effects of
different technological implementations still have to be evaluated,
depending on the access patterns employed by the application and
the expected frequency of power outages.

Nonetheless, the approach of hybridizing replacement policy
metadata cannot be applied to all types of common replacement
policies. Consider a cache employing a round-robin policy, a re-
placement policy supported by most ARM processors. Here, a single
counter per cache set, cycling through the way indices, is pointing
at the next cache line to be replaced. A hybridization is thus not
possible. Moreover, independent of the chosen underlying tech-
nology, this policy may perform poorly after a power outage, as
valid non-volatile cache lines can be indexed as the victim for the
next replacement rounds before eventually cycling back to invalid

Read
Intensive

Write
Intensive

Weakly
Read

Intensive

Weakly
Write

Intensive

cost ≥ \F8 cost ≥ \F8 cost ≥ \F8

cost < \F8cost < \F8cost < \F8

cost
<

\F8

cost
≥

\F8

Figure 3: State machine showing transitions between four
different write intensity states.

volatile cache lines. Even these seemingly minor details are there-
fore becoming relevant when designing hybrid caches for the field
of intermittent computing.

4 REPLACEMENT POLICIES
Cache replacement policies are crucial to managing the limited
space available in cache memory. LRU is one of the most prominent
policies. However, when dealing with hybrid caches, policies not
only have to consider how frequently or recently data in caches was
used, but they also have to anticipate the access patterns to the cache
lines. In this section, we present two differently characterized cache
replacement policies from literature designed for hybrid caches,
which will be used in our evaluations.

4.1 Write Intensity Policy
In the following, we outline a state-of-the-art hybrid cache replace-
ment policy originally presented in [2]. We will refer to this policy
as the WI policy.

The goal of the WI policy is to minimize the number of writes
to non-volatile cache lines as they have a relatively high dynamic
energy consumption without unnecessarily increasing the miss rate
to a greater extent. For this purpose, upon a cache miss, the current
state of a state machine with four different write intensity states is
used to predict the write intensity of succeeding hitting accesses to
this cache line. Such a state machine is displayed in Figure 3. For
identifying a data access so that it can be unambiguously associated
with a state machine, the PC of the instruction triggering the data
access is used. Without a priori knowledge of the application, cache
misses can occur at every possible PC. Note that providing a state
machine to track the write intensity for a cache miss at every
possible PC is infeasible to realize in hardware. Therefore, only 256
state machines are used here, with the PC being hashed to index a
prediction table containing the current state of the corresponding
state machine, naturally leading to collisions. If, upon placement,
the write intensity state machine is currently in one of the twomore
write-intensive states, the data is placed in the volatile section. If it
is in one of the two more read-intensive states, it is placed in the
non-volatile section. Finding a replacement candidate in the chosen
section can be performed using LRU as all remaining cache lines
share the same technology.

For this policy, a cost field is added to each cache line. This cost
is used when updating the state. The cost field is initially set to zero.
Upon a read hit, the cost field is decremented by one, in case of a
write hit, it is incremented by 24 according to [2]. When a cache
line eventually gets evicted, the cost field is then compared against
a predetermined threshold \F8 . If the costs are higher or equal

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

to \F8 , the state machine that was used to initially determine the
placement of the now to be evicted cache line transitions to the next
more write-intensive state. Vice versa, if the costs are lower than
\F8 , the state machine transitions to the next more read-intensive
state.

The threshold thus has to be carefully balanced in order to per-
form beneficial placement decisions. As applications can greatly
differ in their access patterns, a suitable setting would have to be
chosen individually for each application. While Ahn et al. [2] there-
fore propose a dynamic threshold adjustment during runtime, this
comes at the cost of additional hardware overhead. Since for small
IoT devices, this overhead is to be avoided with embedded systems
further designed to only run specific types of applications, for this
paper, we stick to a statically determined threshold as it proves
feasible for our cause.

4.2 Confidence-based Migration Policy
The second architecture-aware replacement policy we will analyze
and compare is based on the works of Badri et al. [3] with some
minor modifications of our own. Unlike the WI policy, this policy is
designed for the purpose of intermittent computing. We will refer
to this policy as the CM policy.

Here, similar to the WI policy, a global table indexed with the
hashed PC is used to decide on the cache section upon placement.
However, for the CM policy, the table entries solely contain a single
bit indicating the cache section the requested data was located in
on its latest eviction. Instead of state machines aiming at predicting
the write intensity for future accesses, here, proactive migration
between cache sections is performed to react to changing access
patterns. More precisely, two counters, namely the read intensity
counter A828 and write intensity counterF828 , in addition to a con-
fidence field 2>=58 , all initially set to zero, are introduced for each
cache line 8 . Upon a read hit to cache line 8 , A828 is incremented by
one, whereasF828 is incremented by one in the case of a write hit.
Moreover, a threshold \2< is introduced. Read accesses are consid-
ered suitable for the non-volatile section, whereas write accesses
are more efficiently performed in the volatile section. Therefore,
once A828 hits the threshold \2< , with 8 being a non-volatile cache
line, as well as forF82 9 hitting \2< , with cache line 9 being volatile,
we can be confident that the data is located in the most suitable
cache section. In these cases, 2>=58 and 2>=59 are thus incremented,
with the corresponding counters being reset to zero. The value of
the confidence field is further capped at a value of three.

Inversely, \2< can also be hit byF82: , with cache line : being
non-volatile, or A82; , with cache line ; being volatile. In these cases,
the section the data is currently placed in is likely not the most suit-
able choice. The migration mechanism will thus swap the contents
of the cache line hitting the threshold, with a cache line from the
opposing section in the same cache set. To be more precise, when
looking for a swap candidate in the volatile section, a cache line 8
fulfilling Equation (1) is selected. Vice versa, a swap candidate in the
non-volatile section is identified by choosing a cache line 8 fulfilling
Equation (2). Additionally, Equation (1) and Equation (2) are also
used to select a victim in the volatile and non-volatile section upon
initial placement, if necessary.

argmin8 {F828 + (2>=58 · \2<)} (1)

argmin8 {A828 + (2>=58 · \2<)} (2)

Equation (1) and Equation (2) are supposed to reflect the least
write- and read-intensive cache lines in the volatile and non-volatile
cache section, respectively. However, in the initial proposal [3],
solely theF828 and A828 counters are used to identify suitable target
cache lines.This can only poorly display the actual access frequency,
since the counters F828 and A828 get reset once the threshold \2<
is hit. On the contrary, the addition of the number of times the
threshold has been hit, i.e., 2>=58 , times the number of accesses re-
quired to hit the threshold, i.e., \2< , does reflect the actual number
of accesses until the confidence cap is reached, and is therefore
employed by us. Note how the counter used in the sum matches the
type of access leading to an increased confidence, as Equation (1)
and Equation (2) are only used within the volatile and non-volatile
cache sections, respectively. Furthermore, instead of swapping the
section of two cache lines once \2< is hit by a counter indicating ac-
cesses unsuitable for the current cache section, the initial approach
[3] simply evicts the migration target from the opposing section. As
in this case, unlike during initial placement, we do not require any
additional space in the cache, with misses generally to be avoided,
we determined this deviation from the original approach to be suit-
able. In order to avoid accessing any invalid intermediate states,
we further model the overhead of a swap operation by blocking
accesses to the concerning cache set until the swap is completed.

In case of a power outage, the CM policy additionally features a
backup mechanism utilizing the confidence field. With high confi-
dence values implying a high number of accesses, when encoun-
tering a power failure, the confidence values between the volatile
and non-volatile cache lines are compared, in order to determine
which data should be saved at this level of the cache hierarchy.
For each cache set, the CM policy compares whether the highest
confident volatile cache line has a higher confidence value than the
least confident non-volatile cache line and if so, swaps the location
of the corresponding contents. This process is continued until no
additional suitable pairs for migration can be identified. By keep-
ing frequently accessed data as close to the CPU as possible, CM
thus attempts to minimize miss rates and latencies, as the data is
expected to be accessed again soon after regaining power.

5 EXPERIMENTAL SETUP
In this section, we display the applications and architecture settings
used to perform our comparative study. Additionally, we outline
the way our simulation behaves in the event of a triggered power
outage.

Regarding the simulation, the cycle-accurate system simulator
gem5 [5] is used, coupled with NVMain 2.0 [19] in order to simulate
non-volatile main memories. We have extended the gem5 simula-
tion in order to allow for the configuration of caches featuring a
variable degree of non-volatile cache lines per set. Furthermore,
we have added support for different read and write latencies and
energy consumptions depending on the cache section, along with
various statistics specific to hybrid caches.

Nils Wilbert, Stefan Wildermann, Jürgen Teich

5.1 Power Outage Simulation
Concerning the simulation of power outages, we employ a power
outage controller, both triggering the power outage and the cor-
responding necessary backup process. Here, an interface featur-
ing a power outage start cycle, a power outage periodicity and a
maximum number of simulated power outages is provided. More
precisely, users can specify the simulation cycle at which the first
power outage is to be triggered. Additionally, users provide a num-
ber of cycles for which the execution will continue after completing
the backup process, i.e., having dealt with the encountered power
outage, until the next power outage is triggered. This interface goes
in line with the expected power outage pattern in intermittently
powered devices. For instance, in, e.g., solar-powered devices, the
execution is performed continuously until a certain point at which
the sun starts to set. Energy can now only be harvested sparingly
by exploiting sunlight reflected by the moon. Successive power
outages are thereby expected in short frequency after regaining
enough power to continue the execution until the eventual sunrise.

5.2 Architectures
Our architectures used for our evaluation are based around embed-
ded systems, such as devices based on the ARM Cortex-M85 which
employs caches as well as a pipelined CPU. More precisely, using
the ARM ISA, we will make use of gem5’s generalized O3CPU CPU
model, featuring a 5-stage pipeline with instructions issued in-order
and potentially executed out-of-order. The simulated single-core
CPU will further be clocked at 480 MHz, with the system clock set
to 240 MHz. Regarding the caches, in line with the ARM Cortex-
M85, we employ a single-level cache hierarchy featuring a 32 KB
large 4-way associative data cache and a 32 KB large 2-way asso-
ciative instruction cache. Evidently, the degree of non-volatility in
the data cache is subject to exploration and part of our evaluation.
The volatile cache sections are implemented in SRAM, with the
non-volatile sections being implemented in STT-RAM technology.
As the instruction cache is read-only with read requests expected
to be more efficiently served in NVM technology, we will stick to
a fully non-volatile instruction cache throughout this paper and
instead focus on the data cache. With regard to the main memory,
a 4 GB non-volatile PCRAM memory is applied, modelled after
the technological characteristics given in [6]. While this may be
larger than most RAMs found in conventional MCUs, it allows us to
model a non-volatile main memory with fairly accurate parameters
regarding latencies and energy consumption, while also providing
enough space for a small embedded OS in order to simplify our
simulation workflow.

The parameters, including latency and energy parameters for
the cache are further displayed in Table 1. We obtained the cache
parameters using NVSim [8] by performing simulations of our own
as well as comparing the results against works more focused on
accurately simulating STT-RAM caches such as [10], as accurate
measurements on NVM parameters are hard to come by. Note that
in our evaluation, most cache misses also go hand in hand with a
cache write, as even for a read miss to be cached, a cache line is
eventually filled, i.e., written with the requested data.

5.3 Applications
To measure the performance of the different hybrid cache designs,
we employ three different benchmarks, each with their own access
pattern characteristics.
AES As a state-of-the-art block cipher, the Advanced Encryption
Standard (AES) is a suitable application to be running on MCUs.
Concerning the characteristics of the application, here, during
the multiple rounds of shifting rows and mixing columns within
a block, we have data that is first read and subsequently over-
written. Furthermore, as the so-called S-Box provides data that is
used in every round of the encryption in order to determine the
substitution of the input bytes, we also have data that is highly
read-intensive without ever being overwritten. We employ the
AES implementation provided by [11] as our first test application,
encrypting a 512 KB large input file with a 32 Byte large key.

Image Processing Since image processing is one of the most com-
mon tasks for embedded sensors, it is a natural field of interest
for our evaluation. We employ a conventional 2D-convolution
on a 640 × 640 large grayscale input image using a 3 × 3 large
kernel. Regarding the access pattern, we have the special case
that all data during the main execution loop is either read-only or
write-only. More precisely, the input image and kernel are never
overwritten, with the output image never being required to be
read.

Merge Sort As sorting data is a frequently required task in many
embedded applications, it is used as our third benchmark appli-
cation. Since it can be easily parallelized for future works and
provides a third type of access pattern, we have selected merge
sort for an input array containing 65,536 integers as the base of
our sorting algorithm. First, the input array is subsequently split
into two equally sized sub-arrays until the sub-arrays solely con-
tain a single entry, the split being a write-intensive task. In the
second phase, the original input array is overwritten by subse-
quently merging the smaller sub-arrays in the correct order. All
involved arrays are therefore both read and written, with the algo-
rithm generally being fairly write-intensive, especially compared
to other sorting algorithms.

All applications will be compiled into unikernels using the modular,
lightweight OS Unikraft [13] to support basic system calls such
as malloc and allow for the abstraction of virtual addresses. In
order to not distort our evaluation with memory accesses caused by
the Unikraft boot process, all statistics generated by gem5 will be
reset between completing the Unikraft boot and starting the actual
application.

6 EXPERIMENTS UNDER CONTINUOUS
POWER SUPPLIES

For the first set of experiments, we compare systems according to
the parameters given in Section 5.2 with the ratio of non-volatile
cache lines being set to either 25%, 50% or 75%. We further com-
pare the two architecture-aware replacement policies, WI and CM,
presented in Section 4 against a conventional LRU approach. The
power supply is assumed to be stable for the experiments carried
out in this section. A design employing no non-volatile cache lines
and the LRU policy serves as a baseline approach. The first perfor-
mance indicator is provided by normalizing the dynamic energy

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

Read Latency Write Latency Read Energy
(per access)

Write Energy
(per access)

SRAM Cache 2 Cycles @240 MHz 2 Cycles @240 MHz 0.009 nJ 0.009 nJ
STT-RAM Cache 2 Cycles @240 MHz 8 Cycles @240 MHz 0.007 nJ 0.056 nJ

PCRAMMain Memory 48 Cycles @400 MHz (tRCD) 0.081 nJ 1.685 nJ
Table 1: Characterized read/write latencies and average read/write access energies of considered memories.

AES Image Processing Merge Sort

\F8 100 10 -2
\2< 8 10 150

Table 2: Replacement policy thresholds for our three test
applications.

0 1 2 3 4 5

·107

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV

WI 25% NV
LRU 25% NV

CM 50% NV

WI 50% NV

LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 4: Comparison of different architectural design op-
tions for the AES application. The performance of the base-
line architecture is displayed by dashed lines. The dominated
space is shown in gray.

consumption caused by accesses to the memory hierarchy of the
tested approach, to the dynamic energy consumption of the base-
line’s memory hierarchy employing the purely volatile cache. The
second performance indicator is given by the number of CPU cycles
needed to run the applications presented in Section 5.3 to comple-
tion. The thresholds \F8 and \2< for the WI and CM replacement
policies, respectively, have been set to suitable values determined
statically and are named in Table 2.

6.1 Discussion of Results for AES
Figure 4 displays the results for the AES application. The dashed
lines indicate the normalized dynamic energy consumption and
the latency of the baseline. Considering the results, a number of
observations can be made. First, the design point featuring the WI

policy and a non-volatility degree of 25% proves to be the optimum
among the compared approaches. Whereas for the WI policy, high
degrees of non-volatility generate additional energy overhead, this
trend does not apply to the other tested replacement policies. In
fact, for the CM policy, the degree of non-volatility does not appear
to significantly influence energy consumption at all. This is mainly
due to the swap mechanism avoiding unsuitable types of access to
the two cache sections, regardless of the size of the section. On the
one hand, the swap mechanism also generates additional energy
and latency overhead as the cache sets are blocked for the time of
the swap. On the other hand, for a high degree of non-volatility of
75%, the advantage of actively swapping cache sections balances
out the swap overhead as WI with 75% non-volatile cache lines is
being outperformed in the energy dimension. The disadvantage of
the WI policy is that it can only place data to a different section
after it is evicted, and the state machines have transitioned from
the write- to the read-intensive states, or vice versa. Especially
for a larger non-volatile section where evictions are more sparse,
write-intensive data erroneously placed in the non-volatile section
will thus generate more NVM write overhead compared to the CM
policy, where it will always be swapped out after a fixed number of
unsuitable accesses.

For LRU, the trend with regard to the degree of non-volatility is
also not linear. In this case, where the policy does not consider the
underlying memory technology, from an outside perspective, an
inherent arbitrariness regarding suitable section placements can
be observed, making it hard to predict the performance. In fact,
the approach combining LRU with 25% of all cache lines being
non-volatile manages to perform only 6.3% of its writes in the
non-volatile section. Inversely, the approach with 50% non-volatile
cache lines performs more than 86% of its writes in the non-volatile
section, while simultaneously only serving 31.4% of its reads in
the non-volatile section. Combining LRU with a 50/50 volatility
split thus performs even worse than LRU with a 75% degree of non-
volatility, where 98.4% of the read requests are served efficiently in
the non-volatile section.

Moreover, the optimal point of WI applied to a 25% non-volatile
cache manages to outperform the baseline in both the energy and
latency dimensions. This is achieved by exploiting efficient non-
volatile reads and the strict separation of the two cache sections
helping to occasionally realize more suitable replacement decisions,
as the overall time spent dealing with the handling of misses de-
creases compared to the baseline.

However, the points in the dominated space can also not be
dismissed entirely, as the degree of non-volatility does not neces-
sarily have to be a design decision. In cases where the chip size
is strictly limited by design, a high degree of non-volatility may

Nils Wilbert, Stefan Wildermann, Jürgen Teich

0 1 2 3 4 5

·107

0.85

0.9

0.95

1

1.05

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV

WI 25% NV

LRU 25% NV

CM 50% NV

WI 50% NV
LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 5: Comparison of different architectural design op-
tions for the image processing application. The performance
of the baseline architecture is displayed by dashed lines. The
dominated space is shown in gray.

be the only possibility to realize caches of a certain size due to
NVM’s high density. When applying a high degree of non-volatility
becomes a necessity rather than a choice, we can also see different
replacement policies, in this case CM, becoming a suitable choice
of replacement policy. For a non-volatility degree of 75%, we have
to further apply weights to the different performance indicators
in order to determine the most suitable design choice, as, when
restricting the analysis to this non-volatility degree, both WI and
CM provide Pareto-optimal design points. Thus, even for a single
point dominating the overall design space in our evaluation, the
design decision might not always be straightforward.

6.2 Discussion of Results for Image Processing
With regard to the image processing application, the Pareto front is
shown in Figure 5. Here, a lot of the requests to the cache come in
the form of read requests. Therefore, energy savings after introduc-
ing NVM technology can be expected, as can be observed by setting
the degree of non-volatility to 25%. While revolving around the
small non-volatile section generates additional latencies, especially
for the WI policy not featuring proactive migration, exploiting
the energy-efficient non-volatile reads leads to energy savings in
the big picture. Setting the degree of non-volatility to 75% further
emphasizes this effect, even for LRU, although LRU does not man-
age to achieve energy savings compared to the baseline approach.
Here, WI even manages to achieve a lower latency compared to
the baseline. The explanation behind this lies in the characteristics
of the image processing application in combination with the WI
policy. More precisely, due to the strict WI placement decisions and
the application processing parts of the data read-only and others
write-only, the policymanages to perform suitable predictions fairly
easily, placing input data in the non-volatile and output data in the
volatile cache section. Therefore, data from the input image does

not tend to be unsuitably replaced by data for the output image,
leading to lower average latencies when requiring input data for
the next computation.

Arguably, two outliers can be identified with regard to the WI
and LRU points featuring a 50/50 split in terms of volatile and non-
volatile cache lines. For LRU, intelligent placement decisions leading
to the lowest energy consumption among the LRU design points are
again performed unconsciously, as the policy is not architecture-
aware. For WI and 50% of cache lines being non-volatile, the chain
of events leading to the evaluation point, not fitting in line with the
WI points featuring a different degree of non-volatility, is more com-
plex. Initially, the WI policy places all data in the volatile section,
as it has not gathered enough information to perform a suitable
prediction. Therefore, at the beginning of the execution, input data
is only placed in the non-volatile section after being evicted at
least once. The smaller the volatile section is scaled, the higher the
miss rates are at the beginning of the execution, before eventually
distributing the data to the corresponding suitable sections. Many
cache misses in a short amount of time further lead to a higher
latency in order to handle the miss, compared to misses stretched
over a longer period of time. The point featuring 75% non-volatile
cache lines is thus slower at the beginning of the execution than
the one featuring 25% non-volatile cache lines. However, due to
the small non-volatile section, the 25% non-volatile approach will
generate more misses throughout the main part of the execution.
For the observed execution time, applying a 50% non-volatile de-
sign balances out these two drawbacks, hence why it features the
lowest overall latency. Nevertheless, with regard to the energy con-
sumption, over the observed runtime, the evenly split approach
combines the drawbacks of both other non-volatility degrees to its
disadvantage. More precisely, due to the smaller non-volatile cache
section, it cannot exploit the non-volatile section as efficiently as
the 75% non-volatile approach, while at the same time not achiev-
ing the low number of non-volatile writes of the 25% approach.
The higher number of non-volatile writes for a higher degree of
non-volatility can be explained by mispredictions, as output data
wrongly predicted to be read-intensive due to, e.g., collisions in the
prediction table will remain in the non-volatile section for a longer
time, causing write overhead before eventually being evicted.

Due to the data being split into read- and write-only sections,
CM’s migration will never actively migrate data to an unsuitable
section, with WI mispredictions being more severe. In case data
initially unsuitably placed needs to be moved to the more fitting
cache section, CM can still migrate a second set of data, i.e., the
swap target, to an unsuitable section. However, this data ”passively”
migrated to the section in which it is accessed less efficiently is
quickly swapped back after hitting the threshold \2< . Throughout
all tested degrees of non-volatility, CM thusmanages to significantly
reduce the number of non-volatile writes, leading to an energy
consumption below theWI comparison points. Moreover, especially
for a low degree of non-volatility of 25%, WI generates higher
miss rates as the data to be read from the non-volatile section will
frequently replace each other. For this non-volatility degree, CM’s
swap mechanism provides an advantage as input data in the non-
volatile section is swapped back to the volatile section rather than
evicted after input data in the volatile section has hit the threshold

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

0 1 2 3 4 5 6

·107

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV

WI 25% NV

LRU 25% NV
CM 50% NV

WI 50% NV

LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 6: Comparison of different architectural design op-
tions for the merge sort application. The performance of the
baseline architecture is displayed by dashed lines. The domi-
nated space is shown in gray.

\2< , leading to a lower miss rate and thus lower latency compared
to WI.

In summary, for this application, we can clearly see that the
performance is heavily influenced by the interplay of the applica-
tion characteristics with the replacement policy behavior and the
underlying degree of non-volatility under specific circumstances.

6.3 Discussion of Results for Merge Sort
Concerning the merge sort application results displayed in Figure 6,
a clear trend can be observed when changing the degree of non-
volatility for a fixed replacement policy. Regardless of the chosen
replacement policy, both the energy consumption and latency rise
when applying a higher degree of non-volatility. While for LRU this
is to be expected, as the architecture-unaware replacement policy
places the data of the write-intensive application in the non-volatile
section more frequently, for WI and CM the explanation differs.

For WI, the higher degree of non-volatility also leads to a higher
number of non-volatile writes.This is partially due towrite-intensive
data unsuitably placed in the non-volatile section remaining there
for longer, as it will take longer for data to eventually be evicted,
with WI not being able to swap data between cache sections with-
out the data being evicted first. Simultaneously, since here, cache
accesses mainly revolve around the volatile section, a higher de-
gree of non-volatility leads to higher miss rates, leading to a higher
overall latency on top of generating additional energy overhead
due to the increased number of main memory accesses.

For CM, the trend regarding energy consumption and latency
is the same as for WI. However, due to CM allowing for data to
swap cache sections proactively rather than waiting for eviction,
the number of non-volatile writes to the cache barely increases
with an increasing degree of non-volatility. The energy consump-
tion increase is thus mainly owing to increased miss rates and,

therefore, an increased number of main memory accesses. This also
reflects the fact that when increasing the degree of non-volatility,
the energy overhead increases less dramatically for the CM policy
compared to WI. For a low degree of non-volatility of 25%, WI
provides an optimal solution among the compared hybrid designs,
beating the baseline in the latency dimension as it achieves a lower
miss rate and lower miss latencies. Similar to the image processing
application, the hybrid design allows for splitting data into the two
cache sections, which would otherwise have replaced each other in
a conventional cache design. Nevertheless, for 50% of cache lines
being non-volatile, none of the three tested policies manages to
dominate one of the other two, as the underlying degree of non-
volatility influences the performance of each replacement policy
differently.

6.4 Intermediate Summary
To summarize, even though for an application like merge sort, the
trend concerning a varying degree of non-volatility for a fixed re-
placement policy might be clear, there is no clear trend concerning
a varying replacement policy for a fixed degree of non-volatility. A
design space exploration depending on the design objectives and
hardware prerequisites is thus still required. Furthermore, for all
three applications, we could observe that even under stable power
supplies, the introduction of NVM to the cache hierarchy can pro-
vide advantages in both the latency and the energy consumption
direction, depending on the characteristics of the application. Addi-
tionally, the architecture-aware replacement policies have proven
their worth, outperforming LRU in the majority of the studied
cases.

7 EXPERIMENTS UNDER INTERMITTENT
POWER SUPPLIES

In this section, we repeat the experiments with the architectures
and applications presented in Section 5.2 and Section 5.3, respec-
tively. The replacement policies presented in Section 4 and varying
degrees of non-volatility are again the subject of our comparison.
For the two architecture-aware replacement policies, we employ
the same threshold settings as named in Table 2. However, here, the
power supply is not assumed to be stable. Instead, every 2,500,000
CPU cycles, we trigger a power outage event in the simulation, lead-
ing to the architecture starting the backup process as outlined in
Section 3.2. While a real-world system would remain in a sleep state
until enough energy is harvested to continue the execution, this
hibernation time is left out of our analysis. The latency and energy
consumption performance indicators are thus determined solely by
the execution and backup phases. The baseline approach employing
a conventional SRAM cache is subject to the same power outage
pattern. As discussed in Section 3.3, the behavior of the metadata
needed for the replacement policies during power outages remains
an open question. For our experiments, we have decided on keeping
all metadata specific to a cache line, i.e., the LRU timing information,
the WI cost field, and the CM A828 , F828 and 2>=58 fields volatile.
Conversely, the WI prediction table and CM previous placement ta-
ble can be implemented in NVM as they are expected to be written
far less frequently.

Nils Wilbert, Stefan Wildermann, Jürgen Teich

0 1 2 3 4 5

·107

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV

WI 25% NV

LRU 25% NV

CM 50% NV
WI 50% NV

LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 7: Comparison of different architectural design op-
tions for the AES application, including power outages. The
performance of the baseline architecture is displayed by
dashed lines. The dominated space is shown in gray.

7.1 Discussion of Results for AES
With regard to the results for the AES application, depicted in
Figure 7, both expected and unexpected results can be reported.
Concerning LRU, while the average number of cycles required to
back up the system state decreases with an increasing degree of
non-volatility, the overall latency barely decreases, only narrowly
beating the baseline. More precisely, the average number of backup
cycles is reduced to 80.3% of the baseline approach with 25% non-
volatile cache lines and reduced to 21.6% of the baseline in the case
of 75% of cache lines being non-volatile. However, as all metadata
regarding the LRU replacement decisions is lost after a power out-
age, valid non-volatile cache lines may be chosen as a replacement
candidate, despite there still being a sufficient amount of invalid
volatile cache lines. With an increasing degree of non-volatility,
these unsuitable replacement decisions become more frequent, di-
minishing the latency advantage. This further causes additional
energy overhead as writebacks avoided during the backup process
are instead performed after regaining power due to the unsuitable
replacement policy decisions.

For WI, the effect of power outages on the latency is more
straightforward, as the latency decreases with an increasing degree
of non-volatility, beating the baseline in the case of 75% of all cache
lines being non-volatile. Excluding the baseline, allWI design points
are part of the Pareto front, with energy consumption increasing
with the degree of non-volatility, which can also be observed un-
der a stable power supply. However, for the intermittent-aware
CM policy, the design points employing a lower degree of non-
volatility dominate the CM design points with a higher degree
of non-volatility, while remaining dominated by the WI designs.
Here, the latency required to handle cache misses decreases with
a decreasing degree of non-volatility. CM will attempt to keep fre-
quently accessed data in the non-volatile section during the backup

0 1 2 3 4 5

·107

0.85

0.9

0.95

1

1.05

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV
WI 25% NV

LRU 25% NV

CM 50% NV

WI 50% NV

LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 8: Comparison of different architectural design op-
tions for the image processing application, including power
outages. The performance of the baseline architecture is dis-
played by dashed lines. The dominated space is shown in
gray.

process. For a smaller non-volatile section, the effect of losing more
of the important data after a power outage thus may not be as pro-
nounced for this policy compared to WI. Furthermore, subsequent
cache misses initially requiring placement in the volatile section
can be placed in a larger, now completely invalid, volatile cache
section, thus not requiring costly writebacks as frequently as com-
pared to a higher degree of non-volatility, i.e., a smaller volatile
cache section. Note that the distribution of accesses per section
remains fairly similar throughout all degrees of non-volatility for
the CM policy due to the proactive swap mechanism.

Nevertheless, the intermittent-aware CM policy does not manage
to outperform the intermittent-unaware WI policy, with CM only
being able to provide Pareto-optimal points on the condition of a
fixed degree of non-volatility of either 50% or 75%. Moreover, while
the introduction of NVM can provide advantages, for this applica-
tion, it does not manage to consistently outbalance the introduced
overhead, despite an unstable power supply.

7.2 Discussion of Results for Image Processing
Due to the characteristics of the image processing application, even
under stable power supplies we already managed to achieve signifi-
cant energy savings by introducing hybrid caches. When subjected
to power outages, as depicted in Figure 8, the advantage of hybrid
caches with a suitable replacement policy is emphasized further.
More precisely, while LRU remains fairly unsuitable, depending
on the degree of non-volatility, both architecture-aware policies
manage to not only achieve energy savings but also latency gains
compared to the baseline approach. Notably, the design points em-
ploying the CM policy now achieve latency gains compared to the
baseline, whereas CM invoked a minor latency overhead under a
continuous power supply. With one exception, across all tested

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

degrees of non-volatility, CM achieves the lowest number of aver-
age cycles required to back up the system state. The exception can
be found by applying LRU to a non-volatility degree of 75%. Here,
LRU can place most of the output image data, the only data being
modified and thus requiring a potential backup, in the non-volatile
section, leading to short backup times. Nevertheless, this also leads
to significant energy overhead during the execution phases, which
is reflected by LRU with a 75% degree of non-volatility being the
only design point failing to beat the baseline in the energy dimen-
sion.

An interesting side effect of introducing power outages can be ob-
served by analyzing the design points employing the WI policy and
the lower degrees of non-volatility of 25% and 50%. For these design
points, compared against the WI policy approach with the higher
degree of non-volatility of 75% the normalized dynamic energy
consumption is reduced far more significantly after introducing
power outages. As output image data stored in the volatile section
gets evicted from its location in case a power outage is encountered,
the cost field, indicating the write intensity, might be set at a far
lower value compared to when the data would have been evicted
in the continuous execution. Therefore, the cost value might be be-
low the threshold \F8 , leading to the corresponding write intensity
state machine erroneously moving to the next more read-intensive
state. Data for the output image is thus more frequently unsuitably
placed in the non-volatile section, requiring further evictions until
the state machine can readjust itself to a more write-intensive state.
Especially for the highest degree of non-volatility of 75% this can
be hazardous. The larger the non-volatile section, once erroneously
placed, the longer the output data will remain there, causing addi-
tional non-volatile writes until it is eventually evicted. Additionally,
due to the smaller volatile section, the output data tends to have
lower values in the cost field, as they are evicted more frequently in
regular execution, further emphasizing the effect of the undesired
drift towards the read-intensive states.

In summary, for the read-intensive image processing application,
cache hybridization has demonstrated its potential, even more so
under unstable power supplies. However, as the Pareto front con-
sists of both architecture-aware policies under varying degrees of
non-volatility, further investigation regarding the design objectives
is required in order to decide on a specific design.

7.3 Discussion of Results for Merge Sort
For the merge sort application, the experimental results after in-
cluding power outages are illustrated in Figure 9. Whereas under
a continuous power supply, combining WI with a 25% degree of
non-volatility was identified as the optimum among the exam-
ined hybrid approaches, after introducing power outages, multiple
hybrid design points are part of the Pareto front. Here, CM, in
combination with a low degree of non-volatility of either 25% or
50%, manages to achieve additional latency gains compared to WI
under the same non-volatility degrees. These latency gains are in
spite of CM requiring a higher average number of cycles to secure
the system state during a power outage compared to WI. In fact,
CM requires 127% and 111% of WI’s cycles to back up the system
for a degree of non-volatility of 25% and 50%, respectively. The
latency advantage regarding CM is thus gained during the regular

0 1 2 3 4 5 6

·107

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CM 75% NV

LRU 75% NV

WI 75% NV

CM 25% NV
WI 25% NV

LRU 25% NV

CM 50% NV

WI 50% NV

LRU 50% NV

Latency (in CPU Cycles)

D
yn

am
ic
En

er
gy

(n
or
m
al
iz
ed

to
SR

A
M

ca
ch
e)

Figure 9: Comparison of different architectural design op-
tions for themerge sort application, including power outages.
The performance of the baseline architecture is displayed by
dashed lines. The dominated space is shown in gray.

execution phase, as CM achieves lower miss rates compared to
WI. This can partially be explained by CM’s backup mechanism
during power outages in combination with the high write intensity
of the merge sort application. Since the merge sort implementation
features a large amount of write-intensive data, the architecture-
aware replacement policies will tend to place a large portion of
the data in the volatile section. As the volatile cache lines are lost
from the cache after a power outage, this leads to a high miss rate
after regaining power. However, the intermittent-aware CM policy
features a mechanism for which frequently accessed cache lines are
swapped to the non-volatile section during a power outage and thus
saved in favor of less frequently accessed data. Whereas WI loses a
large amount of frequently accessed data from the cache during a
power outage, CM can keep the write-intensive data important to
this application closer to the CPU, thus saving time after regaining
power. This backup to the non-volatile cache section also comes
at the cost of additional non-volatile writes before CM eventually
swaps write-intensive data back to the volatile section. Neverthe-
less, the determination of what CM considers important data, i.e.,
data to be saved in the non-volatile section of the observed cache,
is merely a heuristic based around a cache line’s confidence field,
which is reset after a power outage. Therefore, it is difficult to assess
how consciously CM performs suitable backup decisions for this
application.

The second major change in the results after introducing power
outages can be identified by examining the WI design points with
a 25% degree of non-volatility. While still being Pareto optimal,
the energy overhead of the WI 25% non-volatility approach has
increased for the intermittent power supply, being outperformed
by the design point carrying the higher 50% non-volatility degree.
As mentioned in Section 7.2, WI under intermittent power supplies

Nils Wilbert, Stefan Wildermann, Jürgen Teich

tends to erroneously update the write intensity state machines
to the more read-intensive states. On the one hand, for the read-
intensive image processing application, this is a larger issue for
a high degree of non-volatility, as for a smaller non-volatile sec-
tion, the few misplaced write-intensive data are quickly evicted,
thus swiftly switching back to more write-intensive states. On the
other hand, for merge sort, this changes due to different application
characteristics. Here, as a larger volatile section is more heavily
occupied with write-intensive data compared to the image pro-
cessing application, a higher number of write-intensive data are
subject to the erroneous drift towards a read-intensive prediction.
For a low degree of non-volatility, these data erroneously placed in
the non-volatile section still tend to be replaced quicker compared
to a higher degree of non-volatility. However, for merge sort, this
cannot balance out the increase in non-volatile writes caused by the
aforementioned larger amount of mispredictions for a low degree
of non-volatility, i.e., a larger volatile section.

7.4 Summary
The above results further underline the argument that the intro-
duction of power outages can have a range of specific effects on
the performance of hybrid caches, depending on the selected re-
placement policy and the degree of non-volatility. Furthermore,
these effects are difficult to predict without proper experiments and
analyses. Simultaneously, the introduction of hybrid caches to the
memory hierarchy has proven to be able to provide benefits com-
pared to a conventional SRAM cache design. However, for all tested
applications, despite consistently achieving lower backup times,
even under intermittent power supplies, the overhead caused by
NVM can be significant, thus requiring care in the design process.
Nevertheless, the worst case concerning the energy required for the
backup during a power outage, to which an intermittently powered
system has to adhere, improves with the degree of non-volatility.

8 CONCLUSION AND FUTURE RESEARCH
In conclusion, in this paper, we have demonstrated how the in-
troduction of hybrid volatile/non-volatile caches to the memory
hierarchy can provide a suitable alternative to conventional cache
memory designs. Depending on the application, even for a continu-
ous power supply, the examined hybrid cache designs have been
able to achieve both lower latencies and lower energy consump-
tions than conventional SRAM caches. However, it has also become
obvious that a lot of care has to be put into designing such systems.
More precisely, the combination of application and architecture
characteristics, as well as the behavior of the replacement policy,
can lead to a number of hard-to-predict cache effects that are ben-
eficial or harmful to the overall performance. Therefore, despite
architecture-aware replacement policies having shown their worth
in our evaluations, we do not expect the development of another re-
placement policy for hybrid caches to be the most important target
for future research. Instead, we expect future research focusing on
characterizing these cache effects to be the more promising direc-
tion. Especially for the purpose of intermittent computing, a whole
different range of cache effects comes into play, as NVM overhead
needs to be balanced against the advantage of keeping data closer
to the CPU after a power outage. The long-term goal would thus

lead to an automated design tool that can aid in the process of
finding efficient systems featuring hybridized memory hierarchies
according to classifiable application characteristics, user-provided
code annotations, known architecture traits and expected power
supply behavior.

ACKNOWLEDGMENTS
This work is supported in parts by the German Research Foundation
(DFG) as part of the priority program “SPP 2377: DisruptiveMemory
Technologies” under project Co-Design of Persistent, Energy-efficient
and High-speed Embedded Processor Systems with Hybrid Volatility
Memory Organisation (HYPNOS, project number 502213043)

REFERENCES
[1] 2012. Micron Announces Availability of Phase Change Memory for Mo-

bile Devices. https://investors.micron.com/news-releases/news-release-
details/micron-announces-availability-phase-change-memory-mobile-
devices?ReleaseID=692563. Accessed: 2024-05-15.

[2] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. 2016. Prediction Hybrid Cache:
An Energy-Efficient STT-RAM Cache Architecture. IEEE Trans. Comput. 65, 3
(2016), 940–951. https://doi.org/10.1109/TC.2015.2435772

[3] SatyaJaswanth Badri, Mukesh Saini, and Neeraj Goel. 2023. Efficient placement
and migration policies for an STT-RAM based hybrid L1 cache for intermittently
powered systems. Design Automation for Embedded Systems (May 2023). https:
//doi.org/10.1007/s10617-023-09272-w

[4] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,
Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation
During Intermittent Supply for Energy-Harvesting Systems. IEEE Embedded
Systems Letters 7, 1 (2015), 15–18. https://doi.org/10.1109/LES.2014.2371494

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News 39, 2 (aug 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[6] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang,
Beakhyoung Cho, Jinyoung Kim, Younghoon Oh, Duckmin Kwon, Jung Sunwoo,
Junho Shin, Yoohwan Rho, Changsoo Lee, Min Gu Kang, Jaeyun Lee, Yongjin
Kwon, Soehee Kim, Jaehwan Kim, Yong-Jun Lee, Qi Wang, Sooho Cha, Sujin
Ahn, Hideki Horii, Jaewook Lee, Kisung Kim, Hansung Joo,
Kwangjin Lee, Yeong-Taek Lee, Jeihwan Yoo, and Gitae Jeong. 2012. A 20nm 1.8V
8Gb PRAM with 40MB/s program bandwidth. In 2012 IEEE International Solid-
State Circuits Conference. 46–48. https://doi.org/10.1109/ISSCC.2012.6176872

[7] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: a hybrid PRAM
and DRAM main memory system. In Proceedings of the 46th Annual Design
Automation Conference (San Francisco, California) (DAC ’09). Association for
Computing Machinery, New York, NY, USA, 664–469. https://doi.org/10.1145/
1629911.1630086

[8] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P. Jouppi. 2012. NVSim: A
Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31, 7 (2012), 994–1007. https://doi.org/10.1109/TCAD.2012.2185930

[9] Carlos Escuin, Asif Ali Khan, Pablo Ibañez, Teresa Monreal, Victor Viñals, and
Jeronimo Castrillon. 2022. HyCSim: A rapid design space exploration tool
for emerging hybrid last-level caches. In System Engineering for Constrained
Embedded Systems (Budapest, Hungary) (DroneSE and RAPIDO). Association for
Computing Machinery, New York, NY, USA, 53–58. https://doi.org/10.1145/
3522784.3522801

[10] Dhruv Gajaria and Tosiron Adegbija. 2022. Evaluating the performance and
energy of STT-RAM caches for real-world wearable workloads. Future Generation
Computer Systems 136 (2022), 231–240. https://doi.org/10.1016/j.future.2022.05.
023

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
2001. MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No.01EX538). 3–14. https://doi.org/10.1109/WWC.
2001.990739

[12] Mohsen Imani, Shruti Patil, and Tajana Rosing. 2016. Low power data-aware
STT-RAM based hybrid cache architecture. In 2016 17th International Symposium
onQuality Electronic Design (ISQED). 88–94. https://doi.org/10.1109/ISQED.2016.
7479181

[13] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan Santhanam, Ale-
xander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu, Ştefan Teodorescu, Costi

https://investors.micron.com/news-releases/news-release-details/micron-announces-availability-phase-change-memory-mobile-devices?ReleaseID=692563
https://investors.micron.com/news-releases/news-release-details/micron-announces-availability-phase-change-memory-mobile-devices?ReleaseID=692563
https://investors.micron.com/news-releases/news-release-details/micron-announces-availability-phase-change-memory-mobile-devices?ReleaseID=692563
https://doi.org/10.1109/TC.2015.2435772
https://doi.org/10.1007/s10617-023-09272-w
https://doi.org/10.1007/s10617-023-09272-w
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ISSCC.2012.6176872
https://doi.org/10.1145/1629911.1630086
https://doi.org/10.1145/1629911.1630086
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1145/3522784.3522801
https://doi.org/10.1145/3522784.3522801
https://doi.org/10.1016/j.future.2022.05.023
https://doi.org/10.1016/j.future.2022.05.023
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/ISQED.2016.7479181
https://doi.org/10.1109/ISQED.2016.7479181

Hybrid Cache Design Under Varying Power Supply Stability - A Comparative Study

Răducanu, Cristian Banu, Laurent Mathy, Răzvan Deaconescu, Costin Raiciu,
and Felipe Huici. 2021. Unikraft: fast, specialized unikernels the easy way. In
Proceedings of the Sixteenth European Conference on Computer Systems (Online
Event, United Kingdom) (EuroSys ’21). Association for Computing Machinery,
New York, NY, USA, 376–394. https://doi.org/10.1145/3447786.3456248

[14] Jing-Yuan Luo, Hsiang-Yun Cheng, Ing-Chao Lin, and Da-Wei Chang. 2019. TAP:
Reducing the Energy of Asymmetric Hybrid Last-Level Cache via Thrashing
Aware Placement and Migration. IEEE Trans. Comput. 68, 12 (2019), 1704–1719.
https://doi.org/10.1109/TC.2019.2917208

[15] DongMa, Guohao Lan, Mahbub Hassan, Wen Hu, and Sajal K. Das. 2020. Sensing,
Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE
Communications Surveys & Tutorials 22, 2 (2020), 1222–1250. https://doi.org/10.
1109/COMST.2019.2962526

[16] Kaisheng Ma, Xueqing Li, Karthik Swaminathan, Yang Zheng, Shuangchen Li,
Yongpan Liu, Yuan Xie, John Jack Sampson, and Vijaykrishnan Narayanan. 2016.
Nonvolatile Processor Architectures: Efficient, Reliable Progress with Unstable
Power. IEEE Micro 36, 3 (2016), 72–83. https://doi.org/10.1109/MM.2016.35

[17] Dylan McGrath. 2019. Samsung Says It’s Shipping 28-nm Embedded
MRAM. https://www.eetimes.com/samsung-says-its-shipping-28-nm-embedded-
mram/. Accessed: 2024-05-15.

[18] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system persistence.
SIGPLANNot. 47, 4 (mar 2012), 401–410. https://doi.org/10.1145/2248487.2151018

[19] Matthew Poremba et al. 2015. NVMain 2.0: A User-Friendly Memory Simulator
to Model (Non-)Volatile Memory Systems. IEEE Computer Architecture Letters 14
(2015), 140–143.

[20] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: system sup-
port for long-running computation on RFID-scale devices. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). Association for Computing Machinery, New York, NY, USA, 159–170.
https://doi.org/10.1145/1950365.1950386

[21] Nour Sayed, Longfei Mao, and Mehdi B. Tahoori. 2021. Dynamic Behavior
Predictions for Fast and Efficient Hybrid STT-MRAM Caches. J. Emerg. Technol.
Comput. Syst. 17, 1, Article 9 (jan 2021), 21 pages. https://doi.org/10.1145/3423135

[22] Satyabrata Sen and Neena Imam. 2019. Machine learning based design space
exploration for hybrid main-memory design. In Proceedings of the International
Symposium on Memory Systems (Washington, District of Columbia, USA) (MEM-
SYS ’19). Association for Computing Machinery, New York, NY, USA, 480–489.
https://doi.org/10.1145/3357526.3357544

[23] Sivert T. Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, Anand Savanth,
Pranay Prabhat, and Geoff V. Merrett. 2023. Pragmatic Memory-System Support
for Intermittent Computing Using Emerging Nonvolatile Memory. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 42, 1 (2023),
95–108. https://doi.org/10.1109/TCAD.2022.3168263

[24] Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Guru-
murthi, and Mircea R. Stan. 2011. Relaxing non-volatility for fast and energy-
efficient STT-RAM caches. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. 50–61. https://doi.org/10.1109/HPCA.2011.
5749716

[25] Theo Soriano, David Novo, Guillaume Prenat, Gregory Di Pendina, and Pascal
Benoit. 2022. MemCork: Exploration of Hybrid Memory Architectures for Inter-
mittent Computing at the Edge. In 2022 IFIP/IEEE 30th International Conference
on Very Large Scale Integration (VLSI-SoC). 1–6. https://doi.org/10.1109/VLSI-
SoC54400.2022.9939630

[26] Fang Su et al. 2017. Nonvolatile processors: Why is it trending?. In Proc. of DATE,
David Atienza and Giorgio Di Natale (Eds.). IEEE, 966–971. https://doi.org/10.
23919/DATE.2017.7927131

[27] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. 2009. A novel
architecture of the 3D stacked MRAM L2 cache for CMPs. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture. 239–249.
https://doi.org/10.1109/HPCA.2009.4798259

[28] Milijana Surbatovich, Brandon Lucia, and Limin Jia. 2020. Towards a formal
foundation of intermittent computing. Proc. ACM Program. Lang. 4, OOPSLA,
Article 163 (nov 2020), 31 pages. https://doi.org/10.1145/3428231

[29] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, and Yuan Xie. 2009. Power and
performance of read-write aware Hybrid Caches with non-volatile memories.
In 2009 Design, Automation & Test in Europe Conference & Exhibition. 737–742.
https://doi.org/10.1109/DATE.2009.5090762

[30] Mimi Xie, Chen Pan, Youtao Zhang, Jingtong Hu, Yongpan Liu, and Chun Jason
Xue. 2019. A Novel STT-RAM-Based Hybrid Cache for Intermittently Powered
Processors in IoT Devices. IEEE Micro 39, 1 (2019), 24–32. https://doi.org/10.
1109/MM.2018.2890257

https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1109/TC.2019.2917208
https://doi.org/10.1109/COMST.2019.2962526
https://doi.org/10.1109/COMST.2019.2962526
https://doi.org/10.1109/MM.2016.35
https://www.eetimes.com/samsung-says-its-shipping-28-nm-embedded-mram/
https://www.eetimes.com/samsung-says-its-shipping-28-nm-embedded-mram/
https://doi.org/10.1145/2248487.2151018
https://doi.org/10.1145/1950365.1950386
https://doi.org/10.1145/3423135
https://doi.org/10.1145/3357526.3357544
https://doi.org/10.1109/TCAD.2022.3168263
https://doi.org/10.1109/HPCA.2011.5749716
https://doi.org/10.1109/HPCA.2011.5749716
https://doi.org/10.1109/VLSI-SoC54400.2022.9939630
https://doi.org/10.1109/VLSI-SoC54400.2022.9939630
https://doi.org/10.23919/DATE.2017.7927131
https://doi.org/10.23919/DATE.2017.7927131
https://doi.org/10.1109/HPCA.2009.4798259
https://doi.org/10.1145/3428231
https://doi.org/10.1109/DATE.2009.5090762
https://doi.org/10.1109/MM.2018.2890257
https://doi.org/10.1109/MM.2018.2890257

	Abstract
	1 Introduction
	2 Related Work and Contributions
	3 Design Decisions for Hybrid Caches
	3.1 Degree of Non-Volatility
	3.2 Power Outage Behavior
	3.3 Volatility of Replacement Policy Metadata

	4 Replacement Policies
	4.1 Write Intensity Policy
	4.2 Confidence-based Migration Policy

	5 Experimental Setup
	5.1 Power Outage Simulation
	5.2 Architectures
	5.3 Applications

	6 Experiments under Continuous Power Supplies
	6.1 Discussion of Results for AES
	6.2 Discussion of Results for Image Processing
	6.3 Discussion of Results for Merge Sort
	6.4 Intermediate Summary

	7 Experiments under Intermittent Power Supplies
	7.1 Discussion of Results for AES
	7.2 Discussion of Results for Image Processing
	7.3 Discussion of Results for Merge Sort
	7.4 Summary

	8 Conclusion and Future Research
	Acknowledgments
	References

