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Abstract

Hardware based memory pooling enabled by interconnect stan-
dards like CXL have been gaining popularity amongst cloud providers
and system integrators. While pooling memory resources has cost
benefits, it comes at a penalty of increased memory access latency.
This paper proposes a system architecture for prefetching sub-page
blocks from FAM into DRAM cache for improving the data access
latency and application performance. Utility of DRAM caching is
subject to bandwidth availability and contention at FAM node. To
that end, we propose two contention aware enhancements to our
DRAM cache prefetch mechanism. First, we consider the potential
for providing additional functionality at the FAM node through
weighted fair queuing of demand and prefetch requests. Second, we
adapt prefetch rate at the compute-node based on observed FAM
access latencies. Proposed system is evaluated in single node and
multi-node configurations with applications from SPEC, PARSEC,
Splash and GAP benchmark suites. Our evaluation suggests DRAM
cache prefetching can improve IPC up to 7% and both proposed
optimizations can further increment IPC by 7-10%, for a total IPC
gain of 10-13%.
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1 Introduction

Compute workloads are evolving rapidly. Heavy use of Machine
Learning(ML) driven workloads are placing stringent demands on
system design across all platforms. ML techniques like large lan-
guage models(LLM)[22, 39, 69, 74, 75], video processing [32, 37, 76]
and others, rely on large amounts of data for training and some-
times for retrieval. Data center workloads, sometimes referencing
Terabytes of data, with execution spread out on multiple compute
nodes, exert great demands on memory systems [25, 30]. The trend
towards server virtualization [11, 77], is furthering this pressure on
computer memory systems.

In recent years, the performance gap between DRAM and disk
has grown so large to lead system designers to eschew using storage
to extend DRAM entirely in favor of over-provisioning DRAM [12,
26,51, 57, 62, 80]. Many different techniques have been proposed to
reduce the cost of data movement and page fault handling penalties.
These range from employing a larger DRAM memory and running
applications entirely in memory [57, 63], prefetching data blocks
[24, 33, 40], HW/SW co-designed page fault handling mechanisms
[47, 73], and employing remote memories [8, 29, 54].
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Datacenter servers host applications with diverse memory re-
quirements. Provisioned larger DRAM capacities can potentially
ameliorate the performance needs of some applications, while not
being utilized by the rest. Hence, Memory Underutilization is ram-
pant in today’s datacenters. Trace analysis from production clusters
at Google and Alibaba revealed that 45%-60% of allocated memory
to jobs is not utilized [65]. Untouched memory for virtual machine
instances (VM) in Azure servers, average about 25%, while compute
capacity is nearly fully used [50].

Furthermore, $/GB price of DDR memory has plateaued for last
few generations [6]. As a result, cost to provision larger memory
capacities in today’s severs is steeply increasing with every genera-
tion. Memory contributes 37% -50% of total cost of ownership(TCO)
of server fleet [3, 55]. Memory underutilization incurs substantial
costs at the scale of today’s datacenters.

Memory Disaggregation enables applications to avail memory
from a central resource on an ad-hoc basis, freeing the memory from
being tied up statically at node-level. Modern data center servers
have been exploring the potential of disaggregated memories to
provide a less expensive means of furnishing memory [38, 46, 65].
The disaggregated approaches have taken two parallel paths: (1)
First approach accesses memory at another node as remote/far
memory through RDMA and Operating System (OS) based paging
mechanisms [8, 29, 54]. (2) The second approach uses CXL fabric to
provide load/store access to shared common pool of memory, across
multiple compute nodes [1, 7, 20, 81]. Such memory organization is
referred as Fabric Attached Memory(FAM). With either approach, it
is expected that the memory is used more efficiently across different
workloads with divergent memory needs.

These architectural paths result in additional layers in the cache-
memory hierarchy, with remote memory or FAM being the new
layer beyond the DRAM. As new memory layers including disag-
gregated memories, far memories and non-volatile memories close
the gap in speed between different layers of memory, it has be-
come necessary to pursue lower latency approaches for accessing
data from these new layers of memory [8, 48]. This paper pursues
the approach of prefetching data between DRAM and the lower
layers of memory such as disaggregated memory (over CXL-like
interconnect) to this end.

This paper explores the potential of utilizing LLC misses that are
visible at the root-complex level to build a prefetching mechanism
between FAM and DRAM, utilizing a portion of local DRAM as a
hardware managed cache for FAM. We call this proposed cache as
DRAM cache. We employ SPP [41] based DRAM cache prefetcher
as an example to demonstrate the performance gains with DRAM



cache prefetching, but other prefetchers [10, 15, 56] can be em-
ployed as well. Our DRAM cache prefetcher maintains the metadata
for the cached FAM data. Root complex equipped with a prefetcher
redirects requests to cached data to the DRAM cache. On a hit,
the cached data will see DRAM latencies instead of FAM latencies.
Unlike previous mechanisms that considered page level transfers
between DRAM and lower layer memory [8, 48, 54, 78] we consider
the potential for sub-page level prefetches at the hardware level.

Since multiple nodes pool memory capacities from FAM, it is
imperative that the FAM bandwidth is utilized and shared across
multiple nodes effectively. As previous work has shown, prefetch
throttling [31, 71] is an effective mechanism to utilize the mem-
ory bandwidth. We take inspiration from this earlier work and
incorporate ideas for prefetch throttling to effectively manage the
FAM bandwidth across demand and prefetch streams from multiple
nodes. We draw influence from network congestion algorithms [27]
to develop bandwidth adaptation techniques at the source(compute
node). Since CXL-connected memory devices can be enhanced
with extra functionality, we evaluate the potential of employing
Weighted Fair Queueing (WFQ) at the memory node and compare
that approach with bandwidth adaptation at the source.

This paper makes the following significant contributions:

e Proposes an architecture for caching and prefetching FAM
data into DRAM cache at the granularity of sub-pages.

o Supplements FAM node with WFQ-enabled demand/prefetch
request management for effective sharing of available band-
width.

e Enhances the DRAM prefetcher at compute nodes with
bandwidth adaptation, to throttle prefetch issue rate, in
response to contention at FAM.

o Evaluates the proposed prefetch mechanism along with
improvements in single, multi-node system configurations
with homogeneous and heterogeneous application mixes.

Through the rest of the paper we use the terms FAM, memory pool,
and pooled memory interchangeably.

2 Background

2.1 CXL enabled memory pooling

Compute Express Link(CXL) [2] is a cache-coherent and a multi-
protocol interconnect standard for processors to communicate with
devices like accelerators and memory expanders. CXL builds upon
the physical layer capabilities of PCle(electrically compatible). CXL
offers 3 kinds of protocols- CXL.cache, CXL.mem, CXL.io. Any
device that connects to the host processor using CXL can use either
one or more of aforementioned protocols. Based on the protocols
used, CXL identifies 3 types of devices that use one or more these
protocols.

Type-1 identifies devices like Network Interface Controllers(NICs)
that maintain a local cache hierarchy but do not have memory at-
tached to the device, hence uses only CXL.cache protocol. Type-2
devices like GPU, FPGA comprise both local cache hierarchy and
attached memory, so these use both CXL.cache and CXL.mem pro-
tocols. Type-3 devices like memory expanders do not have a lo-
cal cache hierarchy, but have device attached memory, hence use
CXL.mem protocol only.
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Figure 1: CXL.mem enabled memory pooling
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Figure 2: CXL & Fabric Attached Memory(FAM) Architecture

Our discussion in this paper is based on systems that use type-3
devices for memory pooling, through CXL.mem protocol. Fig. 1
shows compute nodes pooling memory resources from a shared
memory node. We call the memory attached to the processor using
CXL as Fabric Attached Memory(FAM).

Fig. 2 shows the architectural components that enable memory
pooling within the compute and FAM nodes. CXL root complex
of the compute node comprises of an agent that implements a
given protocol(CXL.mem in our case). Agent acts on behalf of the
host(CPU) handling all communication and data transfers with the
CXL end point. In our system CXL end point comprises of a FAM
device and a FAM Controller. FAM Controller directly interfaces
with the agent, translating CXL.mem commands into requests that
can be understood by the FAM device(eg: DDR commands).

As illustrated, load misses and writebacks from LLC are handled
either by the local memory controller or CXL root complex based
on the physical addresss. The address decoding is implemented
in Host managed Device Memory(HDM) decoders. During the de-
vice enumeration phase, HDM decoders are programmed for every
CXL.mem device and their contribution to flat address space of the
processor.

2.2 Memory Prefetching & Signature Path
Prefetcher(SPP)

Data prefetching techniques to hide access latency across differ-
ent levels of memory hierarchy, are well studied in the literature.
Prefetchers typically use learning based approaches to predict the
future memory access addresses[10, 40]. Most common features
include address delta correlation, program counter(PC) of instruc-
tion resulting in cache misses, and access history. Recent work
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Figure 3: Signature and Pattern tables of SPP

has applied sophisticated mechanisms like neural networks[67],
reinforcement learning [14, 67] to prefetching.

2.2.1 Signature Path Prefetcher(SPP). In this work, we use SPP
[40] as base architecture for our DRAM cache prefetcher. SPP uses
signatures as a means to keep track of memory access patterns of
the workload. Signatures are a compact representation of history
of memory access delta’s. Architecturally SPP comprises of 2 tables
- Signature Table, Pattern Table. Fig. 3 shows the organization of
SPP with these tables.

Signature Table is indexed by the physical page address and each
entry comprises of of the last cache miss address(within the same
physical page), and current signature. Pattern table maps signature
to address delta’s of future memory accesses. Each pattern table
entry has the following entries.

(1) Signature - Obtained from the signature table. Serves as an
index to this table.

(2) Signature weight - Counts the number of times the corre-
sponding signature has been accessed since the creation of
entry.

(3) delta, weight [4] - Address delta that comprise the signature
and their corresponding access count. 4 ordered pairs.

On a cache access, the physical page address of the access is used
to index into the signature table. Output from the signature table
consists of the signature. With this output, we can calculate the
delta and update the signature as per formulae shown below.

delta = (Miss Addresscyrrent — Miss Addressprevious)
signature = (signature << 4) @ delta

Now the generated signature is used to index into the pattern table,
which gives us the ordered pairs of delta and the corresponding
weights. Delta with the highest weight is used to generate the ad-
dress for the prefetch requests. Additionally, speculative signature
can be formed by combining the current iteration signature(newly
formed) and the obtained delta, according to the above formulation.

Speculative signature can further be used to index into the pat-
tern table, to generate another address delta. This recursive indexing
into the pattern table can be continued desired number of times or
till the pattern table was not able to provide any more delta’s. Once
the prefetch request generation is complete, weight corresponding
to the current delta(output from signature table) is updated in the
pattern table. Signature table is updated with current block address
and current signature. Fig. 4 shows the state of SPP after an example
memory access. Additionally, SPP maintains global history table
that bootstraps the learning of access history, when the data access
stream moves from one page to another.
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Figure 4: State of SPP after access at an address 0xA003

Minor changes are made to baseline SPP design, to make it a
functional DRAM cache prefetcher(§4.1). We also use the baseline
SPP prefetcher, as L2 cache prefetcher in §7.1. We emphasize that
our proposals in this paper are not specific to SPP prefetcher and other
prefetcher designs like [10, 15, 56] can be employed with suitable
modifications in our system. Our focus in this work is to demonstrate
the usefulness of sub-page level prefetching to hide FAM access
latency and to present adaptive optimizations to cater to the usage
model of pooled memory. SPP based prefetcher was just taken as
an example for a pattern based DRAM prefetcher.

3 Motivation

The primary motivation behind memory pooling in data-centers,
is reduction in Total Cost of Ownership(TCO). Cost savings come
in the form of decreased memory costs at compute nodes that are
using the memory pool. But memory pools aren’t a free resource.
Establishing memory pools involve costs in terms of, on-board FAM
controller, memory devices, fabric re-timers, networking costs etc.
Memory pooling makes sense only when it results in costs savings
or breaks even.

Recent study from Google [49] argues that CXL memory pools
are impractical because of high break even costs. The study con-
siders a 16-node pool, where each node uses 16x PCle5 lanes to
connect to memory pool. To handle memory requests from 16 nodes,
FAM controller needs to process data at approximately 1TBps(64
GBps*16). Given the functional similarity to an Ethernet switch,
study claims such controller could cost about $38500.

Based on these costs, we perform break even analysis for memory
pooling for 16 node system. We consider the memory provisioning
model of cloud providers, in which the memory capacity of the
system is indicated by Giga Byte per virtual CPU(GB/vCPU). Typical
cloud scale processors contain 96-384 vCPU’s per node. To calculate
memory costs, DDR5 price model of 3$/GB is used. Fig. 5 shows
the percentage of memory to pool in order to achieve cost break
even, represented across different vCPU’s per node and GB/vCPU
configurations.

Our analysis reveals percentage of memory that is to be pooled,
can vary from 19-99%, depending on the system configuration. For
certain vCPU configurations, memory pooling can make sense only
with high memory configurations(larger GB/vCPU) e.g., 96 and 128
vCPU’s. For a given machine configuration, fraction of memory
that is to be pooled decreases with increase in GB/vCPU size.

Based on the above analysis, For memory pooling to be eco-
nomical, certain system configurations require majority of their
memory capacity requirements to be satisfied by the memory pool.
Workloads running on these systems will have their resident mem-
ory divided between local and pooled memory, according to the



Cost break even analysis for 16-node pool

< 100 <
28 g LINLX -l
s N \\ ~ A
EQ 60 g N
o o R ——
o = S $
£g 20 --
o
0

96 128 192 216 256 336 384

VCPU's per node
GBPerVCPU ==l wdmf =m8 adm]() =é=]12

Figure 5: Breakeven analysis for 16-node system

pooling percentage. Hence, applications running on systems with
higher pooled memory fractions, would see longer access latency,
resulting in decreased performance.

While application analysis and careful location of frequently ac-
cessed or latency sensitive data in DRAM and the rest of the data in
FAM could reduce some of the performance loss from longer laten-
cies, such analysis may not always be possible when the workloads
are not owned by the cloud provider [46, 50].

To mitigate the performance loss due to using FAM memory
pools, we propose DRAM caching of FAM data in local DRAM.
This extra layer of caching decreases the number of accesses that
see relatively long FAM access latency. Consequently, helping us
achieve a balance between performance and cost savings due to
memory pooling.

4 System Architecture

In this section we describe the system level architectural enhance-
ments that we propose. Through the rest of the paper, the demands
and prefetches that we refer to, are LLC misses and DRAM cache
prefetches. DRAM cache prefetches are different from the prefetch
requests issued by the per-core cache prefetcher (core prefetches).

4.1 Enhanced Root Complex

DRAM caching/prefetching is implemented through enhancements
to the root complex. We add a prefetcher and a prefetch queue, to
facilitate the issue of both prefetch and demand requests to FAM. Fig.
6 details the enhanced root complex. We explain the significance of
each of the component in detail below.

4.1.1  Prefetcher. As stated earlier, we use a slightly modified SPP
as our DRAM cache prefetcher. We make design changes to SPP to
operate with sub-page blocks, instead of 64 byte cache blocks. Our
prefetcher trains on node physical address of LLC misses. Based on
observed patterns, prefetcher generates addresses that are aligned
with sub-page block size. LLC misses can occur due to either de-
mand requests or core prefetch requests(L1/L2 cache prefetcher).
Our design here doesn’t distinguish between types of requests that
miss in LLC. Hence for training the DRAM cache prefetcher, core
prefetch misses are treated like demand misses.
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Prefetcher implementation at DRAM allows for a larger stor-
age overhead relative to the core prefetcher. So, our DRAM cache
prefetcher uses tables that are twice as large as the tables of the orig-
inal design. Storage overhead for our DRAM prefetcher is 11kB(2x
to that SPP [41]).

Note that, for memory access to complete, node physical ad-
dresses need to be translated to FAM local address. We assume that
this translation is handled by the elements lower in the memory
hierarchy(HDM decoders). This level of translation is orthogonal
to training of DRAM prefetcher with node physical addresses.

4.1.2  Prefetch Queue. Along with the prefetcher, we added a fixed-
length prefetch queue to the root complex. For every read miss in
LLC that is headed to FAM, the prefetcher generates a predefined
number of prefetch requests(at the maximum), we call this number
the prefetch degree. Each outgoing prefetch request should have a
vacant position in the queue. The prefetch request will be held in
the queue until the respective response is received. Since, the queue
houses the prefetch requests in progress, the queue provides an easy
way to check if a demand request address belongs to any prefetch
in progress. In a sense, prefetch queue functionality is similar to
MSHR(Miss Status Handling Register) in processor caches. When
the prefetch queue is full, no further prefetches are issued until a
prefetch response is received.

We should note that the fixed length prefetch queue itself could
control the rate of prefetch requests issued to FAM. As we will show
later, such static approaches work well for a few applications while
leading to wasteful prefetching for several applications. Prefetch
bandwidth optimizations adapt the prefetch issue rate beyond the
fixed length queue.

Core prefetchers that fetch data into the on-chip processor caches,
share queue with the demand requests in MSHR’s. In our design,
DRAM cache prefetcher cannot use LLC MSHR due to the differ-
ence in block size. While it is possible to use multiple entries in the
LLC MSHR, it is not a resource efficient approach.

Prefetch requests that are leaving the root complex are tagged.
Architectural components in the fabric or at the FAM node, can
likely take advantage of this tagging to enforce priority/QoS schemes.
We leverage this tagging for WFQ priority enforcement across de-
mand and prefetech requests at FAM(§14)
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4.2 DRAM Cache

DRAM cache is explicitly managed in hardware without interven-
tion of the operating system(OS). OS, specifically the memory al-
locator, only plays a role during initialization phase. The memory
allocator should partition the local memory physical address space
and expose a contiguous physical address range to be used as a
DRAM cache. Memory allocator should also take care of not allocat-
ing the physical address range encompassing DRAM cache to any
application. We assume that such support exists in the OS. In this
implementation, we manage the DRAM cache as a set-associative
cache, with replacement policy being LRU. The meta-data to im-
plement the DRAM cache lookup and replacement will be stored
outside the DRAM cache, in the prefetcher state(SRAM buffers).
Since FAM address space can be large compared to the DRAM cache,

DRAM cache

‘ 1 ‘ physical block address ‘ Dy ‘ aid ‘ LRU ‘
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Figure 7: DRAM Cache Metadata format and retrieval

we manage DRAM cache metadata by hashing the FAM addresses
into a small number of slots. To minimize hash collisions it is possi-
ble to employ techniques such as Cuckoo hashing [58]. Like in cpu
caches, tag comparison ensures the correctness of hashing, in an
event of collision. The allocated FAM block address is noted in this
slot during allocation. The format of the DRAM cache metadata
and its retrieval is shown in Fig. 7.

We should note the that metadata cost for DRAM cache man-
agement increases linearly with the number of blocks. For a given
DRAM cache size, the number of blocks decreases as the block
size increases. Hence, an advantage of using larger block sizes for
DRAM cache is that the meta-data overhead is reduced. On the flip
side, using a larger block size can cause increased latencies at FAM.
Given the DRAM cache sizes, metdata management is practical.
For example, when managed as a fully associative cache, 16MB
cache with 256B block size would require approx. 450KB(64K*7B)
of metadata to cover 48-bit physical address space, which is less
than 5% of DRAM cache size.

4.3 Demand & Prefetch requests handling
mechanism

Fig. 8 explains the flow of FAM memory read requests with DRAM
cache and prefetcher. For every outgoing FAM memory request, the
prefetcher is consulted to check if the requested block is present
in the DRAM cache. If the requested block is present in the DRAM
cache, we call it a DRAM cache hit, else we call it a DRAM cache
miss. On a DRAM cache hit, a proxy request is created with the
DRAM cache block address(obtained from the metadata) and sent
to the local memory controller. FAM request waits for the response
of this proxy request and will return with the respective response.
Subsequently, the metadata(LRU field) of the DRAM cache block
that served this proxy request is updated.

On a DRAM cache miss, the requests continue as per usual to
FAM. DRAM cache hit requests experience local memory access la-
tency, while DRAM cache misses experience relatively longer FAM
latency. FAM read requests can be either generated by application
or core prefetcher(L1/L2 cache), both of these request classes are
served by the DRAM cache. In addition to read requests, DRAM
cache should also handle writeback requests from LLC. Writebacks
follow similar datapath as read requests, but in an event of DRAM
cache hit, the dirty bit of the corresponding DRAM cache block’s
metadata is set. During invalidation of DRAM cache blocks, if the
block is dirty, it is written to FAM.
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Figure 8: FAM demand request flow with prefetcher and
DRAM cache

Irrespective of the DRAM cache hit status, prefetcher generates
prefetch requests for every outgoing FAM read request. Before send-
ing out each of the prefetch requests, prefetch queue and DRAM
cache metadata are checked to see if generated request is redundant.
If not, prefetch requests continue to issue stage. When in the issue
stage, prefetch request can be dropped, if the prefetch queue is full
or if the occupancy is at a pre-defined threshold(eg: 95%). Given the
queue is sufficiently empty, prefetch requests are issued to FAM.

On receiving the response for a prefetch request, metadata is
checked to see if there is any vacancy in the DRAM cache. If there
is a vacancy, the prefetch response would be directed to appropriate
block of the DRAM cache directly. If there is no vacancy, prefetcher
issues an invalidation for the LRU block first in DRAM cache and
then the corresponding position will be replaced by the incoming
prefetch block. Our replacement policy prefers clean blocks over
dirty blocks to minimize insertion delays from dirty DRAM cache
block flushes to FAM. Fig. 9 shows the algorithmic depiction of
demand and prefetch request flows.

N i Prefetch R it
LLC Miss | MissAddress| pragatcher TEEn s

Prefetch Response
Demand Response Local DRAM | ves
Cache
Demand Response

Figure 9: Request flow. Dotted orange line indicates demand
requests flow, Solid black line indicate prefetch request flow.
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4.4 FAM Controller

The task of FAM controller is to convert incoming cxl.mem protocol
requests to DDR requests that could be ultimately handled by the
FAM. In a real system, FAM Controller could adapt a port based
design, with each port supporting 8x/16X lanes of PCle/CXL at
the front-end, while supporting multiple channels of DDR4/DDR5
memory in the back-end. Network on chip(NoC) like architectural
structures might be present in order to route the incoming requests
to appropriate queues that feed into DDR channels [50]. Vertical
scaling of such controllers might be essential to support large num-
ber of PCle lanes/memory channels depending on the pool size and
desired number of memory channels.

We abstract the functionality of FAM Controller as a component
that moves incoming requests to DDR channels. All the incoming
requests from multiple nodes are filled into the input queue. We
assume that FAM controller is aware of the maximum memory
bandwidth across all its supported DDR channels. Hence, the con-
troller scans the input queues at appropriate rate and issues the
requests to the respective DDR channel.

With the addition of prefetch to the compute node’s root complex,
FAM controller now receives two types of requests - demand and
prefetch. In the baseline design, we implement a single input queue,
with FIFO scheduling. Requests(both demand and prefetch) from
multiple nodes are dispatched to FAM in the order of their arrival.
Later, we explain how the demand and prefetch requests can be
given different treatment at the FAM through such mechanisms as
Weighted Fair Queuing (WFQ).

4.5 Sub-page block size vs. latency trade-off
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We performed an exploratory analysis to understand the block
size vs. latency tradeoff for sub-page block DRAM cache prefetching.
We observe the IPC and average FAM access latency by varying
the DRAM cache block size. Fig. 10 show our analysis.

As DRAM cache block size increases from 64-512B, IPC gain
stays mostly constant with marginal improvements for 128B, 256B
block sizes. Beyond 512B, average IPC decreases due to increase
in FAM block latency. Moving a FAM page on touch to DRAM
cache (4096B block size) observes about 17 X increase in relative
FAM latency, resulting in substantial IPC decrement. Based on
this analysis, we consider 128, 256, 512 as block sizes for DRAM
cache. DRAM cache block size that is a multiple of CPU cache block
size(64B) will amortize the delays due to flit packaging/serialization
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at CXL fabric, as well as reduce the storage overhead of DRAM
cache metadata management.

5 Prefetch Optimizations

Our optimizations to the DRAM cache prefetcher are aimed at
mitigating the interference between demand and prefetch requests,
there by enhancing the utility of FAM bandwidth. To achieve this we
propose two approaches - Weighted Fair Queuing at memory node,
Prefetch Bandwidth adaptation at compute node. We describe the
design and implementation of both of these optimizations below.

5.1 Weighted Fair Queuing(WFQ)

We consider WFQ as a generic means for providing priority to
demand requests over prefetches at the FAM. By giving a higher
weight to demand requests, we can provide a higher slice of FAM
bandwidth to demand requests. Under congestion, WFQ ensures de-
mands are served with priority over prefetches, there by potentially
mitigating queuing delays for demands due to prefetches.

We enhance the baseline queuing implementation of the FAM
controller, by replacing the single input queue with two input
queues, one each for demand and prefetch. Double queue implemen-
tation enables us to issue prefetches and demands at independent
rates. We take advantage of the prefetch request tagging by the
prefetcher at the compute node, to identify the placement of the in-
coming requests into their respective queues. Both core prefetches
and DRAM cache prefetches are placed in the prefetch queue.

We use a WFQ scheduler to issue requests from the two queues
to the FAM. We use work-conserving deficit weighted round-robin
(DWRR)[68] algorithm to select the queue from which the request
should be issued. W-weight is used to indicate how much weight
demand requests are given relative to the prefetch requests. Pseudo
code of the our algorithm is as shown in Alg.1

For every issue cycle, the IssueRequests() function is called to see
if either of demand or prefetch requests can be issued. We use the
current_round variable to track the round number within a W+1
round window, when the prefetches and demands are served in
1:W ratio. Prefetch requests are preferred in only one round of the
window. During the remaining rounds, we prefer to issue demand
requests. Due to the scheduler being work conserving in nature, if
the preferred choice of requests are not available, we issue the other
type of requests when available. When its the demand request’s
turn, if the demand_deficit did not exceed maximum permissible
deficit(max_demand_deficit), we increment the demand_deficit. If
the demand queue is non-empty and demand_deficit is greater than
0, then we issue a demand request, resulting in decrement of the
demand_deficit by 1. If either demand queue is empty or demand
does not have enough deficit, we try to issue prefetch requests,
which is again subject to prefetch queue non-emptiness and status
of the prefetch deficit.

In order to account for the difference in prefetch and demand
block sizes. We enforce that prefetch_deficit needs to be at least the
ratio of prefetch block size and demand block size, for a prefetch
to be issued to the FAM. Our proposed DRAM prefetcher works in
conjunction with core prefetcher. So, WFQ needs to handle both
CPU cache block core prefetches as well as sub-page block DRAM
cache prefetches. In our implementation, when its the prefetch
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Function IssueRequests():
current_round += (current_weight+1)%(W+1);
demand_queue_status = CheckDemandQueue();
prefetch_queue_status = CheckPrefetchQueue();
r = prefetch_block_size/demand_block_size;
if current_round != 0 then
if demand_deficit < max_demand_deficit then
‘ demand_deficit += quantum;
if demand_queue_status and demand_deficit>0 then
IssueDemandRequests();
demand_deficit = demand_deficit-1;
else if prefetch_queue_status and prefetch_deficit > r
then
‘ IssuePrefetchRequests();
prefetch_deficit = prefetch_deficit-r
else
if prefetch_deficit < max_prefetch_deficit then
| prefetch_deficit += quantum
if prefetch_queue_status and prefetch_deficit>r then
IssuePrefetchRequests();
prefetch_deficit = prefetch_deficit-r;
else if demand_queue_status and demand_deficit > 0
then
‘ IssueDemandRequests();
demand_deficit = demand_deficit-1

end
Algorithm 1: Demand/Prefetch Issue Algorithm

turn, based on the available deficit we issue either a core prefetch
or DRAM cache prefetch. Block size is taken into account when
updating the deficit after issuing the given prefetch request.

5.1.1  Prefetch Queue Promotion. While deprioritization of prefetch
requests promotes effective bandwidth usage by demands, it can
also potentially lead to increased demand wait times. For instance,
demand requests for a block might arrive at the root complex while
the prefetch request for the same block is in flight. To avoid du-
plicate requests and inconsistencies, demands could be made to
wait for the completion of the prefetch request. With WFQ at FAM,
prefetch request completion time, and the resultant wait time of
demand can be non-deterministic.

To minimize such waiting delays, our scheduler implements
a prefetch queue promotion policy. With this policy, when the
demand request arrives at root complex for a prefetch block in flight,
a promotion request for the prefetch block is created and sent to
the FAM. On receiving a promotion request at the FAM controller,
scheduler retrieves the block address and looks for address match
with requests waiting in the prefetch queue. If there is a match, the
corresponding requests is promoted from prefetch to demand queue.
Else, it means the prefetch requests is already issued to FAM and
the promotion request is dropped. This ensures that outstanding
prefetch requests for the same block do not delay later arriving
demand requests for that block.

Event counter
demand_requests_issued

Description
demand requests
issued to the FAM
demand requests
return from FAM
Total demand requests
arrive at the prefetcher
prefetch requests
issued to FAM
minimum demand
read latency in recent history.

demand_requests_returned

demand_requests_total

prefetch_requests_issued

minimum_demand_latency

Table 1: Description of event counters

5.2 Prefetch Bandwidth Adaptation

In the baseline prefetcher, we generate a fixed number of prefetch
requests(prefetch degree) for every LLC miss and issue those re-
quests depending on the prefetch queue availability. When the FAM
device is saturated due to high number of demand requests, issuing
prefetch requests would increase demand latency due to queuing
at FAM, hurting overall performance. Under such conditions, it is
better to dial back the prefetch request issue rate and wait till the
FAM has enough bandwidth to accommodate prefetch requests. To
incorporate such system level feedback, we implement prefetch
bandwidth adaptation at the source.

We take a sampling based approach, to adapt the prefetch issue
bandwidth. To incorporate FAM congestion awareness, we add
event counters to the root complex’s prefetcher state. Each counter
stores two values, instantaneous value and average value. The
instantaneous values of counters are scanned and reset during the
start of each sampling cycle. Average value of the event counter
stores the exponential moving average of the respective values. The
descriptions of event counters that are stored in the prefetch state
are as shown in Table.1.

= (current demand latency > 1.30*minimum_demand_latency)

Decrease Increase
Prefetch Rate Prefetch Rate

‘ Compute ‘

‘ Demand latency increasing

Demand
latency
increasing

prefetch per demand, demand per prefetch, prefetch
greater than demand

Figure 11: Flow chart for prefetch BW adaptation algorithm

Abstract-level logical flowchart of our bandwidth adaptation
algorithm is shown in Fig.11. The algorithm is executed every sam-
pling cycle. Our key idea here is to reduce the prefetch issue rate
when FAM is experiencing congestion. We use growing demand
latency as an indicator for congestion. Onset of this indication, we
decrement the prefetch issue rate.

To determine if the demand latency is increasing, we compare
the measured demand read latency with achievable minimum de-
mand read latency. Through run-time, minimum demand latency



is unknown and influenced by several aspects like locality of mem-
ory requests, fabric topology, and queuing delays at fabric com-
ponents(like switches, re-timers). So, we approximate minimum
demand latency to lowest value of average demand latency seen by
the node(root complex) in the recent history. By tuning the length
of this history, we can tweak the agility of prefetch throttling. In
our implementation, we set the history length to 8 sampling cycles.

Our algorithm perceives congestion, if the measured demand
latency is above 130% of minimum demand read latency. We use
30% as heuristic to eliminate noise in demand latency measurement
due to row hits/misses. Noise margin can be tweaked based on the
underlying device organization.

We employ Multiplicative Increase and Multiplicative Decrease
(MIMD) [21] technique for adjusting the prefetch rate. In our im-
plementation, we set the increase factor to 1.125(12.5% over prev.
value). The decrease factor is determined dynamically based on
the observed prefetcher accuracy. Our algorithm penalizes prefetch
request stream with high accuracy at slower rate and that of lower
prefetch accuracy at faster rate. We expect this optimization to
result in more accurate prefetches to be issued when multiple appli-
cations are competing for bandwidth at FAM. In addition, we mimic
RED [17, 27] at the source and make the decrease factor linearly
dependent on the difference of observed latency and minimum
demand latency.

While both WFQ and bandwidth adaptation are trying to address
the same problem, we evaluate relative merits of both the schemes.
CXL memory nodes could provide additional functionality and our
evaluation of WFQ is intended to understand the implications of
augmenting a memory node with WFQ scheduler. On the other
hand, prefetch bandwidth throttling at the source could decrease
the prefetch requests issued possibly alleviating stress on both FAM
and fabric components.

6 Discussion

6.1 Cache Coherency with DRAM cache

Architecturally, DRAM cache is located outside the CPU caches.
Requests to DRAM cache sub-system, can be either LLC read misses
or writebacks(due to invalidation of cache block). Both of these
request types are handled as reads and writes respectively, at the
main memory level, irrespective of the coherency protocol of the
CPU. Hence, DRAM cache exists outside the coherency domain
of the CPU and its operation is orthogonal to coherency protocol
implementation.

6.2 Overhead of Prefetch Optimizations

Implementation of prefetch optimizations incurs minimal storage
overhead. Bandwidth adaptation requires additional 32B storage
to track event counter and control states. Adaptation Algorithm
implementation requires few arithmetic and logic blocks, which is
affordable at the root-complex level. With possibility of compute
capabilities at the CXL node, WFQ scheduler implementation is
straight forward, and requires minimal resources.

6.3 FAM Controller Assumptions

FAM controller in real systems supports a given PCle/CXL configu-
ration like, 16X or 8% lanes. Hence, peak input data rates that need
to be handled by FAM controller can be easily deducted. Based on
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this peak data rate, vendors typically configure the transfer rate of
each memory channel and number of memory channels, that would
be managed by FAM controller(e.g. Astera Labs Leo Controllers[4]).
With the channel count and transfer rate known, the scanning fre-
quency of input request queues can be calculated. Therefore, it is
reasonable for us to assume that FAM controller scans input queues
at appropriate frequency based on the supported memory channel
configuration.

6.4 Data sharing between nodes

Hardware coherency for memory accesses to pooled FAM, is not
supported by CXL.mem 1.0, 2.0 protocols. Hence, shared memory
implementation with these protocols would require additional mid-
dleware support. But recently announced CXL 3.0 specification,
supports hardware coherency mechanisms for FAM data accesses,
across multiple nodes[34].

In our proposed DRAM cache design, we did not consider the use
case of FAM data sharing between different nodes. But implementa-
tion of such feature would require integration of DRAM cache with
the agent that manages coherency between multiple nodes, DRAM
cache block status(for every node in pool) need to updated with
this coherency agent in order for the requesting node to obtain
the correct(or updated) data block. Such kind of implementation is
scope for future work.

Processor 8 out-of-order cores
clock: 3.3 GHz, 6 issue/cycle
max pending transactions : 16
L1 cache 32 KB, 4 ways
4 cycle access latency
L2 cache 256 kB, 8 ways
12 cycle access latency
L2 Signature Path
Cache Prefetcher Prefetcher(SPP) [41]
L3 cache 8 MB, 16 ways
30 cycle access latency
Local memory DDR4-3200
2 channels, 2 ranks
Nodes 1-4
CXL Network 256B flit-size, Min-packet size: 28B
Bandwidth: 128 GB/s/direction
Min. Latency: 70ns
Per-Node 256
prefetch queue size
Pooled FAM DDR4-2400
2 channels, 2 ranks

Table 2: Simulated system configuration

7 Evaluation
7.1 Methodology

We evaluate DRAM cache prefetcher along with optimizations,
using SST[60] simulation components. We used Ariel, a pin-tool
based processor front-end simulator to simulate compute nodes.
Ramulator[42], a detailed memory simulator has been used to model
both local memory(DRAM) and pooled FAM devices. Opal[43] was
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Benchmark Workload Memory footprint
suite

SPEC17 603.bwaves_s 824 MB

607.cactuBSSN_s 257 MB

619.1bm_s 1.55 GB

628.pop2_s 590 MB

649.fotonik3d_s 587 MB

654.roms_s 245 MB

657.Xz_s 561 MB

Splash 3 LU 515 MB

FFT 625 MB

GAP bfs 864 MB

cc 802 MB

be 593 MB

sssp 545 MB

PARSEC dedup 868 MB

facesim 188 MB

canneal 849 MB

NPB mg 431 MB
is 1GB

XSBench XSBench 611 MB

Table 3: Benchmark configurations

used to emulate the role of operating system’s memory allocator and
page fault handler. Opal allows for configurable memory footprint
distribution between local DRAM and pooled FAM. CXL network is
simulated by provided flit based network model, with programmed
delay and bandwidth.

All of the simulation components are tightly integrated and
distributed as a framework [5]. We found the simulation results to
be deterministic and consistent across multiple simulation runs. SST
based simulation methodology was used by prior works [70, 72].

We evaluated 19 memory intensive workloads from benchmark

suites like SPEC[19], PARSEC[18], GAP[13], Splash3[64], and NPB[9].

Modern servers contain compute nodes that comprise 64-128 pro-
cessors and few 100’s of GB of main-memory. Simulating such a
system, is impractical given the simulation speeds. For realistic sim-
ulation schedules, we simulate a system with scaled down configu-
ration, that runs regions of interest(ROI) within each benchmark.
We expect that our simulator and the corresponding performance
characteristics to scale to a larger configuration, with no issues. The
simulated system configuration is detailed in Table.2. Evaluated
applications and their respective memory footprints are shown in
Table 3. Workloads are configured have their memory footprint
atleast 4-8 times the size of LLC+DRAM cache, in order to ensure
that they stress the main memory.

Both single and multi-node system configurations are evaluated.
Since modelled FAM has 2 DDR4 channels, we consider upto 4
compute nodes in the multi-node system. For multi-node systems,
we ran copies of the same application on different nodes, as well
as different applications(mix) on different nodes. We evaluated 7
such workload mixes on a 4-node system, details of the workload
mixes are stated in Table. 4. In multinode systems, we expect the
higher loads at FAM to result in tighter availability of bandwidth
and hence possibly higher congestion.

Mix | node 0 node 1 node 2 node 3

mix1 | is bfs 657.XZ_S FFT

mix2 | 628. XSBench cc mg
pop2_s

mix3 | canneal bc 607. dedup

cactuBSSN_s

mix4 | 654. cc 619. LU
roms_s Ibm_s

mix5 | 603. facesim is XSBench
bwaves_s

mix6 | cc XSBench 657.Xz_S 649.

fotonik3d_s
mix7 | sssp 607. 649. XSBench
cactuBSSN_s | fotonik3d_s

Table 4: Details of multi-node workload mixes

Below we define figures of merit, terms, and configurations that
we use in discussion through the rest of the section

(1) Core pretcher - Each node in our system, comprises a multi-
core CPU. Within each core, a prefetcher is at the L2 cache
level.

(2) baseline configuration - System with both core prefetchin-
gand DRAM cache prefetching, disabled.

(3) core prefetch configuration - System with core prefetching
enabled, but DRAM cache prefetching disabled.

(4) all-local configuration - Workload running with core prefetch-
ing enabled along with entirety of its memory footprint
residing in local DRAM(FAM is not used).

(5) Non-adaptive DRAM prefetch configuration - Workload run-
ning with core prefetching enabled and DRAM prefetch
enabled, with FIFO scheduling at FAM and no bandwidth
adaptation.

(6) allocation ratio(X) - Workload’s memory footprint divided
between FAM and DRAM in ratio of X:1 respectively.

(7) IPC gain -Ratio of IPC for a given config. to that of workload

in baseline config.(Higher the better)

Relative FAM latency - Ratio of the average FAM access

latency for a workload in a given configuration to that of

workload running in core prefetch configuration.(Lower
the better)

Relative DRAM prefetch requests issued - Ratio of DRAM

cache prefetches issued for a given config to that of DRAM

cache prefetches issued with non-adaptive DRAM prefetch

configuration .

(10) Demand hit fraction - Fraction of demand requests that miss

LLC, that hit in DRAM cache.

(11) Core Prefetch hit fraction - Fraction of core prefetch requests

that miss in LLC, that hit in DRAM cache.
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7.2 Performance gain with Prefetch Bandwidth
Adaptation

For this analysis, we run workloads in 1,2, and 4 node system

configurations. Each workload ran in 3 prefetch configurations -

Core Prefetcher (core prefetch), Core+DRAM cache prefetcher(non-

adaptive DRAM prefetch), Core+DRAM prefetch+prefetch BW

adaptation. Each workload has memory allocation ratio of 8.
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IPC gain with BW. adaptation for 4-node system
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Figure 13: IPC gain due to BW. adaptation for 4-node system.
Geomean from this analysis is represented in "4 Nodes" in
Fig. 12A

Figure 12: Evaluation of DRAM cache prefetcher with
prefetch bandwidth adaptation

Fig. 12 outlines the results of our experimentation. 12A shows
geometric mean (geomean) IPC gain of all benchmarks, for each
prefetch configuration, across the 3 node configurations. Across the
board, DRAM prefetching improves overall performance compared
to core prefetching. Core prefetching resulted in IPC gain of 1.20,
1.18,1.10 for 1,2,4 node systems. With non-adaptive DRAM prefetch,
the same IPC gains increased to 1.26, 1.24, 1.11 respectively. So, non-
adaptive DRAM prefetch resulted in IPC improvement 6%, 6%, 1% for
1,2,4 node systems respectively, over core-prefetching.

Performance improvement comes from reduction in FAM access
latency, as indicated by relative FAM latency in Fig. 12B. Non-
adaptive DRAM prefetch reduced average FAM access latency by
29%, 30%, 19% for 1,2,4 node systems respectively.

Prefetch BW adaptation further enhanced the performance of
DRAM cache prefetching, for 2 and 4 node systems. BW adaptation
resulted in 4% and 8% IPC improvement over non-adaptive DRAM
prefetch for 2 and 4 node systems. Non-adaptive DRAM prefetch
config. performed poorly in 4 node system configuration, with
minimal IPC improvement over core prefetch, thus emphasising
the importance of BW adaptation in bandwidth constrained systems.
BW adaptation resulted in 5% and 9% decrement of relative FAM
latency over non-adaptive DRAM prefetch.

Fig. 12C presents the relative no. of DRAM prefetch requests.
Results indicate that bandwidth adaptation caused 18% and 21%
less DRAM cache prefetches to be issued to FAM, in 2-node, 4-
node systems respectively. Decreased DRAM prefetch issue rate
resulted in decreased demand and core-prefetch hit rate, according
to analysis presented in Fig. 12D. For instance, BW adaption reduced
the demand and core-prefetch hit fraction from 57% and 83% to 50%
and 72%, for 4-node system. Performance improvement despite hit
fraction decrement in 4-node system reveals that prefetch requests
are causing considerable queuing delays at FAM.

Further, we analyze the IPC gain with prefetch bandwidth adap-
tation for 4-node system across different benchmarks, as shown in
Fig. 13. Non-adaptive DRAM prefetch significantly improves IPC
for applications like dedup, LU, 628.pop2_s, mg, is, and facesim.
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Figure 14: Evaluation of DRAM cache prefetcher with WFQ
scheduling

Workloads like canneal, bfs, cc, and bc saw IPC decrement with
non-adaptive DRAM prefetch, possibly due to increased FAM la-
tency. BW adaptation was able to improve the IPC substantially for
these applications, expect for cc.

BW adaptation would mitigate congestion only when the DRAM
prefetches are responsible for creating it. This is because our algo-
rithm implementation throttles only DRAM cache prefetch issue
rate. BW adaptation would be of little help if core prefetches are
responsible for congestion. Future implementations of our prefetch
throttling algorithm can relay the occurence of congestion to the
CPU cache controllers, to enable dynamic throttling of CPU prefetch
requests.

7.3 Performance gain with WFQ scheduling

We evaluate our WFQ scheduling algorithm with 3 weights-1,2,3
(weight of 3 indicates demands and prefetches are served in 3:1
ratio). Each workload is run in 1,2,4 node system configuration,
with WFQ scheduling at the FAM controller, and with different
weights. Performance of WFQ with different weights is compared
to non-adaptive DRAM prefetch(FIFO as indicated in figures). We
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Figure 15: IPC gain due to WFQ for 4-node system. Geomean
from this analysis is represented in "4 Nodes" in Fig. 14A

use FAM/DRAM allocation of 8 for this analysis. Fig. 14 shows our
results.

Fig. 14A shows geomean of IPC gain across all benchmarks,for
WEFQ algorithm with different weights, across node configurations.
WEFQ improves the performance over non-adaptive DRAM prefetch
for 2,4 node systems. Weights 1,2,3 improve the average IPC by
8%(3%), 9%(4%), 9%(4%) over non-adaptive DRAM prefetch for a 4(2)
node system. Again, the increase in IPC is due to decrement in FAM
access latency. For a 4(2) node system, average relative FAM latency
is reduced by 17%(6%). Given that BW adaptation resulted in 7%
IPC improvement over FIFO scheduler, WFQ marginally performs
better.

WFQ also resulted in less number of DRAM prefetches to be
issued. For a 4 node system, WFQ with weights 1,2,3 resulted in
17%, 31%, 37% decrement in average relative DRAM prefetches
issued. Such behavior is expected because, as the weight to demands
increases, prefetch request latency increases, filling the prefetch
queue, subsequently causing less number of prefetches to be issued.
Fig. 14D shows the demand and core-prefetch hit fraction with
WFQ across different node configurations and weights. For 4 node
system, hit fractions drop as the weight increase, this can be perhaps
due to less prefetch requests being issued.

Additionally, we analyze the IPC gain with WFQ for 4-node
system across different benchmarks, as shown in Fig. 15. Workloads
that benefited from BW. adaptation, benefited from WFQ as well.
Interestingly, cc application sees IPC improvement with WFQ but
not with BW. adaptation. Due to placement of both core prefetch
and DRAM cache prefetch requests into the same queue, WFQ can
potentially mitigate congestion due to either of the prefetch request
type. This can be the reason why WFQ performs marginally better
in comparison to bandwidth adaptation.

Fig. 16 shows the DRAM prefetch promotion fraction for evalu-
ated benchmarks across different weights of WFQ scheduler. Pro-
motion fraction is significant in applications like, 603.bwaves_s,
649.fotonik3d_s, 654.roms_s, bfs, cc, mg, and XSBench. For most of
these application, the promotion fraction increases with increase
in WFQ weight, expect cc. On an average, across the evaluated
workloads, DRAM prefetch promotion fraction is 8%, 10%, 11% for
weights 1,2 and 3 respectively. This analysis reveals that a sub-set

DRAM Prefetch Promotion fraction with WFQ for 4-node system
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Figure 16: Fraction of DRAM prefetch requests that promoted
from prefetch to demand queue at FAM controller
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Figure 17: Performance gain with different configurations of
DRAM prefetch across 7 multi-node workload mixes
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Figure 18: Relative FAM latency with different configurations
of DRAM prefetch across 7 multi-node workload mixes

of applications benefit from prefetch queue promotion policy that
was implemented as part of our WFQ scheduler.

7.4 Performance analysis of multi-node
workload mixes

Combining the methodology of §7.2 and §7.3, we evaluated our

7 multi-workload mixes with a total of 5 prefetch configurations-

Core+DRAM prefetch(non-adaptive DRAM prefetch), Core+DRAM

prefetch+Bandwidth. Adaptation, Core+DRAM prefetch+WFQ[1,2,3]).
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Figure 19: IPC gain wrt to all-local configuration

Allocation ratio is set to 8. Each mix is run on a 4 node system. Fig.
17 and Fig. 18 show the IPC gain and relative FAM latency for all
the workload mixes.

BW adaptation and WFQ provide equivalent IPC improvement
over non-adaptive DRAM prefetch for mix1, mix3, mix6 and mix7.
Over non-adaptive DRAM prefetch, both of optimizations equiva-
lently resulted in IPC gain of 5%, 6%, 10%, 8% for mix1, mix3, mix6,
and mix7 respectively.

Mix5 saw slight IPC decrement with BW adaptation, but a perfor-
mance improvement of 7% with WFQ. BW adaptation outperformed
WFQ by 16% for mix4. WFQ outperformed BW adaptation by 5%
for mix2. On an average, BW adaptation and WFQ resulted in 10%
and 9% IPC gain over non-adaptive DRAM prefetch. Similarly, BW
adaptation and WFQ reduced the FAM latency by 26% and 25%.

This analysis reveals to us that both these prefetch optimizations
are useful in mitigating congestion at FAM. But the relative perfor-
mance gain due to either of these approaches depends not just on
the workload alone, but also on co-existing workloads. Bandwidth
adaptation might perceive congestion due to co-existing workloads
as self caused and accordingly respond with prefetch request throt-
tling. WFQ being implemented at FAM, applies static priority to
demands over prefetches for all the request streams, which might
or might not result in optimal performance.

7.5 Performance improvement across allocation
ratios

We study the impact of DRAM cache prefetch along with proposed
optimizations across different allocation ratios. We considered 4
prefetch configurations for this experiment - Core Prefetcher(core
prefetch), Core+DRAM prefetch(non-adaptive DRAM prefetch),
Core+DRAM+BW. adaptation, Core+DRAM+WFQ(2). We vary the
allocation ratio from 1(50%) to 8(88%) and measure the IPC gain
with respect to all-local configuration for each benchmark, for a
4-node system. Fig. 19 shows the geo. mean of IPC gains of all
benchmarks, with a given allocation ratio, across different DRAM
prefetch configurations.

This experimentation reveals that utility of core prefetching
decreases as FAM usage increases. Core prefetch allowed 9% IPC
decrement when 1/2 of data is resident in FAM and 28% IPC decre-
ment when 8/9th of data is in FAM.

DRAM prefetch along with the presented optimizations, im-
proves the IPC by an average of 5%-6% across all the allocation
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DRAM cache size sensitivity analysis across different workloads
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Figure 20: DRAM cache size sensitivity analysis, with DRAM
cache sizes varied from 4-32MB

ratios. These improvements help bridge the performance gap be-
tween pooled memory configuration and all-local configuration.
For allocation ratio of 1 (50%), DRAM prefetch equipped system
allowed only 4% performance loss compared to all-local configura-
tion. These results indicate that our proposed DRAM prefetch(with
both optimizations) efficiently exploits bandwidth at FAM for per-
formance enhancement.

7.6 Sensitivity Analysis

7.6.1  DRAM Cache Size. To analyze the sensitivity of our design
to DRAM cache size, we evaluated a 4-node system, with WFQ
scheduler(weight 2) at FAM controller, and allocation ratio of 8. We
run same copies of the given workload, with varying DRAM cache
sizes. Fig. 20 shows the results of these experiments. Benchmarks
like 628.pop2_s, 654.roms_s, cc, bc, XSBench showed sensitivity
to DRAM cache size, their respective IPC gains increased with
increase in DRAM cache size. On average, DRAM cache size of
4MB, 8MB, 16MB, 32MB resulted in IPC gain of 1.17, 1.19, 1.20, 1.22.
IPC improved by 5% as the DRAM cache size increased from 8 to
32MB on average.

7.6.2  CXL Fabric Latency. As discussed earlier, CXL fabric latency(round

trip) is implementation specific. Here we evaluate sensitivity of our
DRAM cache prefetcher to different CXL fabric latencies. We con-
sider 3 latency values for this experimentation -70 ns, 150 ns, 210
ns. We evaluate a 4-node system, with WFQ scheduler(weight 2) at
FAM controller, and allocation ratio of 8.

Fig. 21 shows IPC gain for evaluated applications with DRAM
cache prefetcher, across different CXL fabric latencies. For most of
the workloads, performance improvement due to DRAM caching,
increase with increase in fabric latency. 657.xz_s presents an in-
teresting case, where the performance gain remains constant with
increasing CXL fabric latency. On an average, DRAM prefetch re-
sulted in IPC gain of 10%, 18%, 24% for CXL fabric latencies of 70
ns, 150 ns, 210 ns respectively.

7.6.3  Prefetch Block size. To evaluate the sensitivity of our DRAM
cache to the prefetch block size. We run all the workloads in 4-
node system, by changing the programmed prefetch block sizes.
We consider 3 prefetch configuration for this analysis, Core+DRAM
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Figure 21: IPC gain with DRAM cache prefetcher for different
CXL fabric latency

DRAM cache block size sensitivity analysis

128 256 512
DRAM cache prefetch block size
M Core+DRAM prefetch B Core+DRAM+BW Adaptation
H Core+DRAM+WFQ-2

IPC gain

= =

o

- & R O
L i

Figure 22: IPC gain with DRAM cache prefetcher for different
prefetch block size

prefetch (non-adaptive DRAM prefetch),Core+DRAM+Bandwidth
adaptation, Core+DRAM+WFQ-2. Allocation ratio is set to 8. Fig.
22 shows the geomean of IPC gain of all benchmarks, executed with
given DRAM prefetch configurations, across 128, 256, 512 block
sizes. Non-adaptive DRAM prefetch saw slight IPC decrement as
the prefetch block size is increased from 128 to 512. But with the
optimizations turned ON, performance improvement with 128, 256
block sizes are similar. For both of the block sizes, WFQ-2 the
performance of non-adaptive DRAM prefetch by 8-9%. Even with
bandwidth adaptation and WFQ, 512 block size performed poorly,
with IPC trailing by 5% compared to 128, 256 block sizes.

8 Related Work
8.1 Memory Tiering

Pond [50] by Microsoft, uses machine learning algorithm to classify
the applications into memory latency sensitive/insensitive cate-
gories. Based on the classification, an allocation policy that places
the application’s data in slow memory tier(FAM),is enforced. Simi-
lar data placement mechanism is proposed by Google [46]. Both of
these approaches assume strong knowledge of application behav-
ior. While this might be true for hyperscaler specific workloads, it
might not be possible for all system use cases.

Page placement and movement strategies have been extensively
explored in [52, 53, 55, 79]. These approaches heavily rely on linux
kernel’s page access tracking mechanisms, to create a hot/cold
profile of application’s memory footprint. Such profiling enables,
informed placement and timely movement, of pages across different

memory tiers. Our proposed DRAM cache prefetching is orthogonal
to such page level approaches. Our prefetcher predicts the future
memory accesses using on the fly learning of application’s access
patterns and prefetches sub-page blocks into DRAM cache.

8.2 Prefetch optimizations

FDP [71] has considered feedback to control the prefetching rate
from DRAM into LLC. Our proposal differs from this work in signif-
icant ways. We consider prefetching from FAM into DRAM, employ
more sophisticated prefetchers, implements separate queues & pri-
orities for demand & prefetch requests.

Separate queues for prefetch & demand requests, and fair queu-
ing, have been studied earlier in the context of multiprocessor
systems where resources are shared [23, 36]. We leverage this ear-
lier work in context of memory pooling between multiple compute
nodes.

Blue[61] and APT-GET[35], considers timeliness of prefetches in
order to issue prefetches sufficiently ahead. However, these works
do not consider dynamic latency at the memory system. Addition-
ally, our proposed system implements de-prioritization of prefetch
requests at FAM, which can potentially complicate timeliness es-
timations. Timeliness optimizations that accounts for dynamic la-
tency at FAM, can be scope for future work.

In systems with limited bandwidth, Criticality aware prefetchers
drops the prefetch requests that are less critical(useful), there by
reducing stalls at memory device. CLIP [59] uses a two stage design
that considers ROB occupancy and prefetcher accuracy to filter
out loads for prefetch generation. Our proposed system operates
outside the processor and doesn’t have access to such information.
so we use latency measurements and DRAM prefetch accuracy to
throttle(drop) prefetch requests.

8.3 CXL-FAM and Remote Memory

Prefetching from far/remote memories has received significant
attention recently [8, 24, 29, 54]. These works predominantly aim
to optimize the cost of moving pages from one node to another while
allowing memory to be shared across nodes connected through
InfiniBand network. Our work in this paper, takes motivation from
aforementioned works, but considers hardware-based prefetching
of sub-page blocks in a more tightly integrated environments like
CXL-attached FAM.

Recent work, Johnny Cache [48] has shown that it is possible
to avoid cache conflicts in fast memory when fast memory is com-
pletely used as a cache for FAM. Our work employs only part of the
fast memory as a cache, while using rest of fast memory to satisfy
application memory needs.

PreFAM [44] proposes prefetching at a distance from FAM into
local DRAM cache. Albeit the similarities in the system architecture,
PreFAM doesn’t consider resource contention at FAM due to other
participating nodes. Moreover, we propose dynamic adaptation
of prefetch bandwidth based on perceived FAM latency in this
work, while PreFAM considers changing distance at which prefetch
requests are generated.

Latency overhead for LLC miss due to CXL fabric access is imple-
mentation dependent. Intel’s CXL implementation [66] states that
CXL fabric could add 70 ns to memory access latency. Direct CXL



[28] implements a memory pooling solution leveraging CXL.mem
protocol, reporting that their CXL fabric adds around 200 ns to
access latency. DRAM cache prefetching along with bandwidth
optimizations that we proposed in our work are agnostic to CXL
fabric latency.

Cache in Hand [45] proposes a system that uses CXL attached
SSD’s, as a cost effective memory capacity expander. Cache in
Hand implements a prefetcher on the expander side(FAM side),
which directly forwards the prefetch data to LLC using Data Direct
I0(DDIO) mechanism. Our work in this paper focuses on effective
bandwidth utilization of FAM pools across multiple pooling nodes.
Nevertheless, DRAM caching expands the effective cache capacity
of the CPU beyond LLC, potentially reducing off-node accesses.

Hotbox [16] has suggested that the employment of large pages
may not be universally beneficial in disaggregated memory systems.
Our work here considers the movement of sub-page data blocks
between DRAM and FAM to reduce the access latencies at FAM.

9 Conclusion

This paper proposed a prefetching mechanism for caching sub-page
blocks from FAM in a portion of the DRAM. The prefetcher learns
from LLC misses heading to FAM and issues prefetch requests to
bring FAM data to DRAM to reduce the latency of future accesses.
We considered two optimizations to mitigate congestion: compute-
node based issue rate management mechanism based on observed
latencies, and a memory-node based weighted fair queuing mech-
anism. We show that both of these mechanisms can improve the
IPC of non-adaptive DRAM cache prefetch by 7-10%. Our evalua-
tion reveals that both of the approaches are effective in improving
performance in different system configurations and workloads.
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