
Programming the Future: the Essential Role of System Topology
Awareness in Heterogeneous Disaggregated Environments

Beatrice Branchini
Politecnico di Milano, Italy

Pacific Northwest National Laboratory, USA
beatrice.branchini@polimi.it

Ian Di Dio Lavore
Politecnico di Milano, Italy

Pacific Northwest National Laboratory, USA
ian.didiolavore@pnnl.gov

Vito Giovanni Castellana
Pacific Northwest National Laboratory, USA

vitogiovanni.castellana@pnnl.gov

Marco Santambrogio
Politecnico di Milano, Italy

marco.santambrogio@polimi.it

ABSTRACT
Heterogeneous disaggregated systems represent a promising solu-
tion to deliver the performance required by next-generation High-
Performance Computing (HPC) workloads. Nevertheless, their het-
erogeneity represents a significant challenge in the application
development process, making it urgent to identify solutions to pro-
gram these systems productively and efficiently without sacrificing
performance. In this paper, we explore the potential of system topol-
ogy information in addressing such a challenge. We delve into the
foundations of system topology and how this information could be
exploited in high-level programming libraries across all layers of the
software infrastructures, from runtime systems to user-facing APIs.
We propose K-Nearest Neighbors (KNN) as a simple case study,
which we implement with a distributed programming library proto-
typed to exploit topology awareness. We demonstrate the solution’s
effectiveness on a commodity cluster with GPU-equipped nodes
and illustrate how it will apply to next-generation disaggregated
hardware.

CCS CONCEPTS
• Hardware→ Buses and high-speed links; Emerging technologies;
• Computer systems organization→ Distributed architectures;
• Computing methodologies → Distributed programming lan-
guages.

KEYWORDS
Disaggregated Memory, High-Performance Computing, Distributed
Systems, Heterogeneous Computing, GPU, Programming Libraries

1 INTRODUCTION
The ever-increasing demand for computational power pushes mod-
ern High-Performance Computing (HPC) systems toward including
increasingly complex hardware. Current generation HPC systems
feature thousands of nodes, commonly including multicore Central
Processing Units (CPUs) and accelerators, such as Graphics Pro-
cessing Units (GPUs) or Field Programmable Gate Arrays (FPGA).
Besides commodity coprocessors, which are here to stay, the land-
scape of next generation(s) hardware will be much more variegated,
with systems equipped with diverse components such as Tensors
Processing Units, memory expansions, or even custom chiplets to
address the different needs of different workflows (Figure 1).

M
em

or
y

N
VM

e

Sm
ar

t
 N

IC
s

CXL’s SpaceHW-Accelerators

…

PCIe
Switch

Figure 1: Modern systems are inherently heterogeneous.

In disaggregated systems, memory represents a significant con-
cern for performance and programmability since different compo-
nents have their physical memory and, typically, their own address
space. In this context, Compute eXpress Link (CXL) represents a
promising approach to connect CPUs, accelerators, and memory ex-
pansions, delivering high-performance memory coherency across
different memory spaces [31]. Multiple specifications of the CXL
protocol, built on top of the PCIe physical layer, have been proposed
in recent years, with various vendors offering their implementa-
tions for their devices [32]. In the latest release (3.𝑥), CXL enables
multi-level switching designs with disaggregated memories over
sophisticated network topologies [1].

Despite the promising approach, it is still not possible to practi-
cally deploy systems following such a specification [2, 3, 13], espe-
cially considering that most vendors currently support only early
versions of CXL (i.e., 1.1) [32]. With time, devices compliant with
more recent CXL specifications will become available; nevertheless,
the lack of high-level environments for programming disaggregated
systems could become a deterrent to early adoption. The infras-
tructure of such environments can be built on top of the Operating
System (OS) architecture, runtime systems, programming library,
or a combination of all of them [2]. In any case, in heterogeneous

https://orcid.org/0000-0001-9829-397X
https://orcid.org/0009-0009-1572-3221
https://orcid.org/0000-0003-3516-7903
https://orcid.org/0000-0002-9883-9693

Branchini, et al.

settings, the implementation of common operations such as mem-
ory allocation must incorporate features such as memory-tiering.
Indeed, multiple levels of disaggregated memory regions will be
available for allocation, with significant trade-offs with respect to
size, latency, and overall bandwidth. Also, addressing becomes non-
trivial. Based on how and where data is allocated, OS and library-
level abstractions must incorporate complex memory mappings
between virtual and physical addresses (OS abstraction) or sophis-
ticated indexing schemes hidden underneath the implementation
of smart pointers, iterators, and/or containers access methods (li-
brary/runtime abstraction). Furthermore, although shared-memory
abstractions are convenient, locality must still be carefully consid-
ered. On disaggregated systems, such abstractions might inadver-
tently generate accesses to far-away memory regions, resulting in
performance degradation due to high latency. Finally, memory dis-
aggregation is not only due to component heterogeneity but could
also result from the complex design of a single device, pushing the
overall complexity even further. A typical example are CPUs, which
may differ in Non-UniformMemory Access (NUMA) configurations
even within the same product family, significantly impacting appli-
cations’ performance. Systems with different NUMA configurations
expose different challenges, and extensive knowledge of the under-
lying hardware is required for efficient application development.

Some of the challenges associated with memory disaggregation
are already attacked, with various techniques, on existing commod-
ity clusters. The State of the Art proposes a multitude of libraries
based on Partitioned Global Address Space (PGAS) models for dis-
tributed containers, and techniques such as active messages and
work migration are well known to improve locality by moving
computation where data reside. However, nodes in these systems
are typically homogeneous (i.e., each node has the same hardware
configuration), making it relatively easier for developers to reason
about locality. Nevertheless, performance portability still repre-
sents an issue. Performance-critical applications are optimized for
specific hardware, e.g., with custom thread affinity and process
binding configurations based, for example, on NUMA properties.
Porting these codes on multiple machines is intuitively not naive
and often involves numerous trial-and-error cycles, contributing to
the increased programming effort.

For all these reasons, we anticipate that system topology aware-
ness will play a crucial role in the effective programming of per-
formance portable applications, and we advocate for the need for
topology information across all layers of the complex software
stack, from runtime systems up to user-facing APIs.

Among the options discussed in [2], we further advocate that
the first abstractions to offer adequate support for heterogeneous
disaggregated systems will be libraries and runtime systems. We
acknowledge that the changes required in existingOSs architectures
are substantial and will require a tremendous engineering effort,
especially for production-ready solutions. On the contrary, libraries
and runtime systems are relatively easier to maintain and adapt to
novel paradigms, shortening time-to-prototype and early adoption.

In this paper, we support our proposition by first highlighting the
relevant topology properties necessary to operate on heterogeneous
disaggregated architectures effectively; then, we demonstrate the
practicality of our proposal by presenting a topology discovery
mechanism integrated within the runtime layer of a high-level C++

library for distributed systems, SHAD [10]. We finally showcase
how the topology information can be exploited in the upper layers
of the stack to implement workloads on heterogeneous hardware.

2 SYSTEM TOPOLOGY PROPERTIES
In this Section, we highlight through motivating examples the in-
formation required by high-level libraries and runtime systems
to successfully adapt to future heterogeneous disaggregated HPC
systems. The research community has shown interest in defining
standards for heterogeneous systems to integrate topology infor-
mation within de-facto standard programming languages for the
HPC domain. Exemplary of this are the several C++ proposals that
discuss in a technology-agnostic way those properties [8, 9, 28].
Recognizing those efforts, we focus on pragmatically identifying a
subset of those properties to be directly integrated into a topology
discovery system.

Complex System Topologies. Once devices comply with the
latest standards of CXL and become available for server-grade in-
frastructures, increased diversity of system topologies is expected,
and the monolithic architecture of modern HPC clusters and cloud
environments will likely not hold true anymore [3].Memory strand-
ing, i.e., the memory that cannot be rented out in cloud environ-
ments since no more CPU cores are available, can reach up to 25%
of the overall capacity of a node [20]. Combining this aspect with
the fact that memory counts to 40% of rack-level costs [22] and half
of node-level costs [27], it appears evident that properly increasing
the overall utilization is essential for cost-effectiveness. CXL em-
powers a paradigm shift that disaggregates the physical location
of memory, I/O devices, and accelerators using the pool concept,
i.e., the possibility to partition those resources on-demand, creating
ad-hoc allocations for the end-users [16]. Studies have analyzed the
capabilities of CXL to surpass the performance of classical RDMA
approaches [22, 32], with the latest 3.0 and 3.1 specifications al-
lowing peer-to-peer networking with direct access to the device’s
memory. It is also worth noting that modern clusters and super-
computers already feature a variety of interconnection structures
spanning from tree-based topologies to mesh, ring, or spine/leaf
architectures [3, 4, 6]. Therefore, incorporating the inner design of
modern runtime systems and libraries topology information (e.g.,
distance metrics between memories/accelerators/compute nodes
and network topology graphs) is paramount to accelerate work-
loads in future generations of disaggregated HPC architectures.

Heterogeneous Memories. Modern HPC systems comprise vari-
ous kinds of memories, making them already heterogeneous with
respect to overall system memory. Each device can be character-
ized through several metrics, among others latency, bandwidth,
and capacity. Intuitively, these are required to achieve optimal
data distributions. For example, a significant portion of datacenter
applications’ memory working set can be offloaded to slower mem-
ories [19, 22, 23]. CXL’s tiered memory pooling [16] offers those
applications a way to achieve this offloading procedure successfully.
Moreover, several research works have highlighted the benefits of
considering different types of non-volatile memories that are often
underutilized, such as NVMe and Intel Optane™ drives [18, 33].

Programming the Future: the Essential Role of System Topology Awareness in Heterogeneous Disaggregated Environments

When it comes to memory disaggregation, virtually any large-
scale application could benefit from topology information; however,
big data analytics frameworks are among the ones that offer more
opportunities for improvement. An example of such frameworks,
GEMS, is described in [11, 12, 26]. GEMS is an in-memory graph
processing engine optimized for executing SPARQL queries on
large RDF datasets on commodity HPC clusters. The RDF format
represents a graph as a collection of subject-predicate-object triples,
with each predicate component associated with a Uniform Resource
Identifier string. When an RDF dataset is ingested, GEMS creates a
Dictionary which associates strings to numerical identifiers, and
vice versa. These IDs are then used to populate the Graph data struc-
tures. Since RDF datasets could reach a trillion-tuple scale, these
containers might reach massive memory footprints. However, it is
important to notice that, most often, SPARQL queries rarely need
frequent access to the Dictionary since constant labels appearing
in a query could be looked up at once at the beginning of execution.
Hence, with topology information, one could distribute dictionaries
on slower, high-capacity memories. Similarly, caches for frequent
terms could be allocated in faster memories, either closer or directly
on compute nodes responsible for execution. Furthermore, in the
presence of multiple graphs, topology awareness could allow stor-
ing them in different regions of the disaggregated memory based
on, for example, their size or how frequently they are used.

Hardware Accelerators. If not the first, GPU acceleration is the
most common example of system disaggregation, where pools of
GPUs are made available to multiple servers to improve overall
utilization and reduce costs [2]. Countless applications use hard-
ware acceleration, such as PASTIS [30], a distributed pipeline for
high-performance large-scale protein similarity search, i.e., identify-
ing similarities across protein sequences. Given the computational
intensity of the main task, that is, the actual alignment of the se-
quences, the authors integrated ADEPT [5] into the framework to
considerably speed up the analysis [29]. ADEPT is a library that
exploits GPUs to align genomic sequences, and it can run on de-
vices from different vendors and, consequently, capabilities. On
the single node, this library also offers the possibility to exploit
multiple GPUs at the same time. For the author to extend PASTIS,
topology information appears crucial to enable the use of GPUs, or
accelerators in general. Firstly, the availability and the number
of the accelerators within a node is essential to enable offloading
the computation. Furthermore, vendor-specific identifiers are
necessary to enable the use of the proper runtime and ensure porta-
bility across systems with different hardware. Finally, information
about the device computing capabilities can help the end user
to adapt the software to the underlying hardware quickly. In this
context, examples of device-specific data for GPUs are the size of
the off-chip and constant memory, the number of streaming mul-
tiprocessors, and the availability of Tensor Cores or native DPX
instructions [14]. Similarly, for FPGAs, functional parameters are
the maximum achievable clock frequency and memory information.

Summary. Different workloads may require different topology
information to exploit disaggregated systems best. We identify the
most relevant ones and classify them based on high-level classes of
devices and spatial properties:

WORKLOAD

Library

Distributed Data Structures
System

Topology
Information

Domain-Specific APIs

NODE XNODE 1 NODE 2

Runtime System

Partitioned Global Address Space (PGAS)

4

3

2

1

Figure 2: Components inside modern libraries targeting dis-
tributed systems can exploit topology information at differ-
ent levels.

• Hardware accelerators:
– Availability on a specific locale;
– Vendor-specific identifier (to set the proper runtime);
– Computing capabilities;

• Memories:
– Availability on a specific locale;
– Vendor-specific identifier;
– Type;
– Hardware features (e.g., size, latency, bandwidth, volatil-

ity/persistency);
• Processor:

– NUMA domains characteristics;
– Number of cores;
– Support for Simultaneous Multithreading (SMT);
– Thread enumeration;

• Spatial organization:
– Distance betweenmemories/accelerators/compute unit-

s/network interfaces;
– How memories relate to hardware accelerators;
– Network topology-graph;

3 ENABLING TOPOLOGY AWARENESS
As highlighted in the previous Sections, system topology informa-
tion needs to be considered a central component in the design of
libraries and frameworks for future disaggregated heterogeneous
HPC systems. Topology information can be exploited at different
stack levels when implementing the software infrastructure, as
highlighted in Figure 2. This information must certainly be consid-
ered to build, maintain, and access high-performance distributed
data structures (Figure 2, 1). Indeed, information like data locality
is paramount to optimize data-processing kernels, possibly moving
computation tasks where, or close to, the data resides. This will be
even more prominent with CXL’s cxl.mem devices, which might
offer different performance levels based on the underlying architec-
ture and their physical location within the disaggregated system.
Additional information like NUMA-layout, hyperthreading capa-
bilities, and process bindings should be exploited by the runtime
system (Figure 2, 2) [21, 25, 34]. It has become common to iden-
tify domain-specific specialization of agnostic high-level libraries

Branchini, et al.

Intra-Node
Exploration

Locale - 0

Locale - 2 Locale - X

Locale - 1

Topology Exchange

Locale
hwloc, nvml,

rocm-smi

Global Topology Aggregation

Locale - X
Loc-0 Topo-0

Topo-1

Loc-1 Topo-1

Loc-2 Topo-2

Loc-X Topo-X

C

BA

Figure 3: Schematic representation of the topology discovery
pipeline we implement inside SHAD.

in fields such as Machine Learning or Graph Analytics [15, 24].
Properly exploiting architectural and topological knowledge (Fig-
ure 2, 3) of the complete distributed system while performing
domain-specific operations has more potential than in agnostic
solutions (e.g., exploiting Tensors Cores or DPX instructions based
on their availability [17]). Finally, application developers might
want to fine-tune their codes further based, for example, on do-
main knowledge of usage patterns. Therefore, proper APIs should
expose the topology information (Figure 2, 4). In the following,
we describe an exemplary implementation inside a high-level C++

library of how system topology information can be gathered and
built up to provide a complete characterization of the system.

3.1 A Practical Example
To support our proposition, we implement a topology-aware frame-
work on top of SHAD [10], an open-source C++ library for produc-
tive programming of distributed-memory systems. We consider it
a representative of the libraries/runtimes that could be extended to
support the broader class of disaggregated systems by incorporat-
ing topology awareness in their implementation and APIs. SHAD
exposes a shared-memory programming interface, with APIs and se-
mantics close to standard C++ (e.g., STL iterators, algorithms, access
methods). Data is distributed across locales, i.e., computational units
equipped with memory (e.g., a core, a NUMA domain, or a node),
in such a way that each locale owns a portion of the data. Currently,
data is distributed evenly across all the available locales. However,
with topology information, this could be easily extended to change
the distribution, such as allocating data on accelerator-equipped
locales or memory expansions for rarely accessed data. Further-
more, SHAD can expose system topology information directly to
the user-facing APIs to allow them to tune data distribution and
execution policies (e.g., allocate data only on GPU-equipped nodes
and process it on such accelerators). At a high level, we model the
topology of the system as a map replicated on each locale for fast
lookup. Each entry’s key refers to a specific locale, and the value is
its topology descriptor, which characterizes CPUs and hardware ac-
celerators with availability and computing capabilities information.

The topology is modeled as a graph to capture the interconnect
scheme of the different system components conveniently.

Figure 3 depicts the steps of the topology discovery pipeline car-
ried out automatically at run timewhen program execution starts. In
Step A , i.e., the Intra-Node Exploration, each system locale charac-
terizes the hardware visible to them. In our current implementation,
we leverage hwloc to build a hierarchical view of the system [7].
First, we record the CPU’s NUMA domain configuration and core
count, together with the processor’s cache hierarchy. We then build
an inventory of accelerators, if any. The accelerator descriptors
report high-level information, such as their identifier, type (e.g.,
GPU, or FPGA), the off-chip memory size, and the interconnect
with the CPU. Step B performs the Topology Information Exchange.
In this phase, each locale broadcasts the information about its own
topology to all the other locales in the system. This information is
then aggregated in Step C , reconstructing the overall system topol-
ogy. Finally, we propose an API to query the topology directory,
e.g., to identify locales equipped with a specific device.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We validate our proof-of-concept implementation on a HPC cluster
with 24 nodes. Each node has two Intel Xeon E5-2670, with 768GB of
main memory. The nodes are interconnected with a flat Infiniband
network (MellanoxMT27500). While most commodity clusters have
homogeneous nodes, in this system, instead, only five nodes of the
available 24 are equipped with GPU accelerators (NVIDIA P100
with 16 GBHigh-BandwidthMemory (HBM)memory). We leverage
the cluster’s heterogeneity to illustrate the benefits of exploiting
topology awareness in high-level libraries.

4.2 Experimental Evaluation
We consider the exact K-Nearest Neighbors (KNN) problem as a
use case. Given a query vector and a dataset, the KNN search aims
at identifying the K vectors in the database that are closer to the
query one. In our case, we compute the distance using the Euclidean
distance as metric. We consider a dataset of 200𝑘 N-dimensional
floating point vectors generated randomly, with 𝑁 set to 2048. We
execute a total of 10𝑘 queries for each run and set K to 100 nearest
neighbors for each query. Starting from the properties discussed
in Section 2, we leverage a few exemplary ones to highlight the
necessity of topology awareness. In particular, we exploit the avail-
ability of hardware accelerators and their memory profiles. Based
on the availability of accelerators in the cluster, we measure the ap-
plication performance with three different configurations, namely
CPU-only, CPU+GPU, and topo-aware GPU-only (Figure 4).

Figure 5 reports the strong scaling evaluation of the execution
time in seconds for all three configurations.We collect the execution
times of 10 iterations and average the results using arithmetic mean.
The first configuration, i.e., CPU-only, is a naive implementation
where the computation is scheduled only on the CPU, regardless
of the availability of accelerators. The CPU-only implementation
leverages the PGAS distributed containers available in the SHAD
library. Execution time in the CPU-only is reported as the red line
in Figure 5. We report performance improvements when increasing
the number of nodes as expected for a parallel workload.

Programming the Future: the Essential Role of System Topology Awareness in Heterogeneous Disaggregated Environments

N4

Input Memory (PGAS)

N5N3N2N1N0

Input
Memory
(PGAS)

C
PU

-O
N

LY
C

PU
 +

 G
PU

To
po

-A
w

ar
e

G
PU

-O
N

LY

N4

Input Memory (PGAS)

N5N3N2N1N0

N4 N5N3N2N1N0

Figure 4: Test configurations for our workload, with increas-
ing levels of exploited system topology (top to bottom)

The second configuration is the CPU+GPU version. This config-
uration does not consider topology information when distribut-
ing data, as in the previous case. However, it does consider GPU
availability, i.e., each locale involved in the computation offloads
processing to the fastest available compute unit (CPU/GPU). As
a result, accelerator-equipped locales offload computation on the
GPU, while all the other only use the CPU cores. The green line in
Figure 5 depicts the scaling properties of this configuration. The
first five nodes all feature a GPU, and since we schedule the com-
putation on the fastest compute unit, execution time improves and
scales with the number of nodes. However, further including CPU-
only nodes brings diminishing returns due to the high unbalance.
In this scenario, since data is evenly distributed, and each locale
processes the same amount of data, overall latency is dominated
by the CPU-only nodes’ contribution, voiding the performance
benefits of acceleration. Hence, for a number of nodes greater than
5, performance follows the same trend as the CPU-only with the
slowest locales (i.e., the non-accelerated ones), bounding the overall
achievable performance.

Finally, the last configuration, i.e., the topo-aware GPU-only,
exploits topology information in both stages when distributing and
scheduling the computation. Given a heterogeneous distributed
system, we filter the nodes and select only those connected to a
hardware accelerator. This operation is done at runtime without
prior knowledge of the system organization. In this case, once the
nodes with a GPU are identified, we allocate data only on those
nodes, increasing the PGAS locality in GPU nodes. We report the
scaling of the execution time for this configuration as the blue line
in Figure 5. Increasing the number of nodes improves performance
as long as accelerators are added. Then, data from non-accelerated
locales is partitioned across the accelerated ones. Thus, locales
performing the computations are the ones equipped with a GPU.

1 2 3 4 5 6 8 16 24
Nodes

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
) -

 lo
g

sc
al

e

CPU Only
GPU + CPU
Topo GPU

GPU Avail.
CPU Node

Figure 5: Scaling study of the KNN execution time from 1 to
24 nodes, exploiting different levels of topology information.

This translates into a plateau since adding CPU-only nodes does
not contribute to the processing.

These three configurations highlight how efficiently exploiting
topology information can improve performance. Hence, including
such information and exposing it to the end user can improve
memory management and performance. The proposed approach is
general enough to be easily extended to much more sophisticated
hardware with significantly more complex application scenarios.

5 CONCLUSIONS
Heterogeneous disaggregated systems promise to deliver the per-
formance demanded by next-generation workloads. Understanding
and leveraging their structure is paramount for users to exploit
them efficiently. This paper advocates for including system topol-
ogy information in modern programming libraries to achieve su-
perior performance portability on heterogeneous disaggregated
hardware. We present a practical example by integrating system
topology awareness into the runtime and data structures layers of a
C++ library for distributed systems. We also analyze how leveraging
this information at different levels affects application performance.
While our current proof-of-concept implementation only supports a
limited number of devices, in future work, we will investigate more
sophisticated disaggregated designs, including memory expansion
nodes with potentially limited compute capabilities.

ACKNOWLEDGMENTS
This research is based upon work supported by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), through the Advanced Graphic
Intelligence Logical Computing Environment (AGILE) research
program, contract number DE-AC05-76RL01830. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the ODNI, IARPA,
or the U.S. Government.

REFERENCES
[1] Ishwar Agarwal. 2022. CXL overview and evolution. In Proc. Hot Chips. 1–24.

Branchini, et al.

[2] Marcos K Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam,
and Gerd Zellweger. 2023. Memory disaggregation: why now and what are the
challenges. ACM SIGOPS Operating Systems Review 57, 1 (2023), 38–46.

[3] Hasan Al Maruf and Mosharaf Chowdhury. 2023. Memory disaggregation:
advances and open challenges. ACM SIGOPS Operating Systems Review 57, 1
(2023), 29–37.

[4] Mohammad Alizadeh and Tom Edsall. 2013. On the Data Path Performance of
Leaf-Spine Datacenter Fabrics. In 2013 IEEE 21st Annual Symposium on High-
Performance Interconnects. 71–74.

[5] Muaaz G Awan, Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr,
Leonid Oliker, and Katherine Yelick. 2020. Adept: a domain independent sequence
alignment strategy for gpu architectures. BMC bioinformatics 21 (2020), 1–29.

[6] Maciej Besta, Jens Domke, Marcel Schneider, Marek Konieczny, Salvatore Di Giro-
lamo, Timo Schneider, Ankit Singla, and TorstenHoefler. 2020. High-performance
routing with multipathing and path diversity in ethernet and hpc networks. IEEE
Transactions on Parallel and Distributed Systems 32, 4 (2020), 943–959.

[7] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,
Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. 2010.
hwloc: A generic framework for managing hardware affinities in HPC applica-
tions. In 2010 18th Euromicro Conference on Parallel, Distributed andNetwork-based
Processing. IEEE, 180–186.

[8] Gordon Brown, Ruyman Reyes, Michael Wong, H. Carter Edwards, Thomas
Rodgers, Mark Hoemmen, Patrice Roy, Carl Cook, Jeff Hammond, Hartmut
Kaiser, Christian Trott, Paul Blinzer, Alex Voicu, Nat Goodspeed, and Tony Tye.
2018. P0796r3: Supporting Heterogeneous & Distributed Computing Through
Affinity. https://api.semanticscholar.org/CorpusID:211222533

[9] Gordon Brown, Ruyman Reyes, Michael Wong, H. Carter Edwards, Thomas
Rodgers, Mark Hoemmen, and Tom Scogland. 2020. P1436r2: Executor prop-
erties for affinity-based execution. https://api.semanticscholar.org/CorpusID:
211483209

[10] Vito Giovanni Castellana and Marco Minutoli. 2018. SHAD: The Scalable High-
Performance Algorithms and Data-Structures Library. In 2018 18th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). 442–
451.

[11] Vito Giovanni Castellana, Marco Minutoli, Shreyansh Bhatt, Khushbu Agar-
wal, Arthur Bleeker, John Feo, Daniel Chavarría-Miranda, and David Haglin.
2017. High-performance data analytics beyond the relational and graph data
models with gems. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 1029–1038.

[12] Vito Giovanni Castellana, Alessandro Morari, Jesse Weaver, Antonino Tumeo,
David Haglin, Oreste Villa, and John Feo. 2015. In-memory graph databases for
web-scale data. Computer 48, 3 (2015), 24–35.

[13] Nan Ding, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan,
LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, and Nicholas
Wright. 2022. Methodology for Evaluating the Potential of Disaggregated Mem-
ory Systems. In 2022 IEEE/ACM International Workshop on Resource Disaggrega-
tion in High-Performance Computing (REDIS). IEEE, 1–11.

[14] Anne C Elster and Tor A Haugdahl. 2022. Nvidia hopper gpu and grace cpu
highlights. Computing in Science & Engineering 24, 2 (2022), 95–100.

[15] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning
with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[16] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. 2023. Memory pooling with cxl. IEEE Micro 43, 2 (2023), 48–57.

[17] Yufeng Gu, Arun Subramaniyan, Tim Dunn, Alireza Khadem, Kuan-Yu
Chen, Somnath Paul, Md Vasimuddin, Sanchit Misra, David Blaauw, Satish
Narayanasamy, and Reetuparna Das. 2023. GenDP: A Framework of Dynamic
Programming Acceleration for Genome Sequencing Analysis. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (Orlando, FL,
USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 25, 15 pages.

[18] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar
Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[19] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
et al. 2019. Software-defined far memory in warehouse-scale computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 317–330.

[20] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for
Computing Machinery, New York, NY, USA, 574–587.

[21] Marcos Maroñas, Antoni Navarro, Eduard Ayguadé, and Vicenç Beltran. 2023.
Mitigating the NUMA effect on task-based runtime systems. The Journal of

Supercomputing 79, 13 (2023), 14287–14312.
[22] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-

wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3 (<conf-loc>, <city>Vancouver</city>, <state>BC</state>, <coun-
try>Canada</country>, </conf-loc>) (ASPLOS 2023). Association for Computing
Machinery, New York, NY, USA, 742–755.

[23] Hasan Al Maruf, Yuhong Zhong, Hongyi Wang, Mosharaf Chowdhury, Asaf
Cidon, and Carl Waldspurger. 2023. Memtrade: Marketplace for Disaggregated
Memory Clouds. Proceedings of the ACM on Measurement and Analysis of Com-
puting Systems 7, 2 (2023), 1–27.

[24] TimMattson, Timothy A Davis, Manoj Kumar, Aydin Buluc, Scott McMillan, José
Moreira, and Carl Yang. 2019. LAGraph: A community effort to collect graph
algorithms built on top of the GraphBLAS. In 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 276–284.

[25] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunkumar, Eiman Ebrahimi,
Aamer Jaleel, Alex Ramirez, and David Nellans. 2017. Beyond the socket: NUMA-
aware GPUs. In Proceedings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (Cambridge, Massachusetts) (MICRO-50 ’17). Associa-
tion for Computing Machinery, New York, NY, USA, 123–135.

[26] Alessandro Morari, Vito Giovanni Castellana, Oreste Villa, Antonino Tumeo,
Jesse Weaver, David Haglin, Sutanay Choudhury, and John Feo. 2014. Scaling
semantic graph databases in size and performance. IEEE Micro 34, 4 (2014),
16–26.

[27] Timothy Prickett Morgan. [n. d.]. CXL And Gen-Z Iron Out A Coherent Inter-
connect Strategy — nextplatform.com. https://www.nextplatform.com/2020/
04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/. [Accessed
11-06-2024].

[28] Thomas Rodgers, Patrice Roy, Carl Cook, Jeff R. Hammond, Hartmut Kaiser,
Christian R. Trott, Paul Blinzer, and Alexandru Virgil Voicu. 2020. P1795r2:
System topology discovery for heterogeneous & distributed computing. https:
//api.semanticscholar.org/CorpusID:211482877

[29] Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Muaaz G Awan, Georgios A
Pavlopoulos, Ariful Azad, Nikos Kyrpides, Leonid Oliker, Katherine Yelick, and
Aydin Buluç. 2022. Extreme-scale many-against-many protein similarity search.
In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–12.

[30] Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios A Pavlopoulos, Ariful
Azad, and Aydın Buluç. 2020. Distributed many-to-many protein sequence
alignment using sparse matrices. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–14.

[31] Debendra Das Sharma. 2022. Compute Express Link®: An open industry-
standard interconnect enabling heterogeneous data-centric computing. In 2022
IEEE Symposium on High-Performance Interconnects (HOTI). IEEE, 5–12.

[32] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, RenWang, Jung HoAhn,
Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine
CXL-Ready Systems and Devices. In Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture (Toronto, ON, Canada) (MICRO
’23). Association for Computing Machinery, New York, NY, USA, 105–121.

[33] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi,
Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S. Kim. 2023. Overcoming the
Memory Wall with {CXL-Enabled}{SSDs}. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23). USENIX Association, Boston, MA, 601–617.

[34] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda. 2017. Designing Locality
and NUMA Aware MPI Runtime for Nested Virtualization based HPC Cloud with
SR-IOV Enabled InfiniBand. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (Xi’an, China) (VEE
’17). Association for Computing Machinery, New York, NY, USA, 187–200.

https://api.semanticscholar.org/CorpusID:211222533
https://api.semanticscholar.org/CorpusID:211483209
https://api.semanticscholar.org/CorpusID:211483209
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://api.semanticscholar.org/CorpusID:211482877
https://api.semanticscholar.org/CorpusID:211482877

	Abstract
	1 Introduction
	2 System Topology Properties
	3 Enabling Topology Awareness
	3.1 A Practical Example

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Evaluation

	5 Conclusions
	Acknowledgments
	References

