
Sadram

Sadram Arithmetic in C++

Robert Trout

 Sadram, Inc.

 Lititz PA USA

 robertTrout@sadram.net

David Lynch

 Sadram, Inc.

 Lititz PA USA

 davidLynch@sadram.net

ABSTRACT

The Sadram architecture (Symbolically Addressable DRAM)

enables DRAM to sort incoming data as well as perform basic

database access functions [6]. This is equivalent to processing

symbolic addresses rather than the traditional linear addresses.

This extension enables DRAM to relieve the CPU of multiple

DRAM accesses to perform elemental address computations and

thereby save the time and energy that would otherwise be expended

moving data to and from the CPU.

The consequences of moving computations into DRAM (process-

in-memory or PIM) are profound. In this paper we describe the

extensions that we have made to a standard C++ compiler to exploit

such capability. We add a new organizational type, called a sart, to

the language. A sart is <indexed> with angle brackets enclosing

one or more expressions. The critical difference between arrays and

sarts is that the sart index is not limited to small integers but may

be a richer data element.

Sadram CONCEPTS
• Primacy of sort as an organizational tool

• Inherent parallelism of DRAM

• Address computation in DRAM

• Accessing arrays with non-linear indexes

KEYWORDS
• Symbolic memory addressing

• Sart (sorted array)

• DRAM addressing

1. Motivation

DRAM is intrinsically a block device, ie., accessing a single bit

requires accessing an entire block (aka row). Sadram exploits this

intrinsic parallelism.

About half of the energy consumed by memory is spent moving

data to the CPU. This along with the intrinsic latency of DRAM,

have driven CPU manufacturers to incorporate enormous cache

memories into the CPU. Cache memory is fast and close to the CPU

but has a much higher power/bit budget than DRAM because it is

implemented as SRAM which draws power to merely hold the data.

This is another motivation to exploit the parallelism of DRAM.

The motivation for extending the C++ compiler is to provide direct

access to symbolic addresses. C++ was chosen because it does not

have a native symbolic address mechanism. Python is also under

active consideration; it only requires the modification of the

NumPy and SciPy libraries to implement Sadram functionality.

Sadram efficiently implements sparse arrays without explicit

coding because only those elements an array which are used incur

the cost of storage (and indexing). Arrays with a large percentage

of unused locations (sparse arrays) are stored more efficiently than

traditional address based schemes.

Sadram functionality is implemented with very simple logic. This

simplicity is not merely a recognition that memory transistors are

not ideal for computations (memory transistors are designed to hold

data, versus CPU transistors designed to move data), but simplicity

is the inevitable consequence of high level parallelism. Only the

most simple functions will be common to all algorithms.

2. Sort and Symbolic Addresses

Sort is the most fundamental organizational tool. Access to

unordered data requires O(N/2) operations to find one item in a

collection of N item. Finding the same datum in an ordered set

requires O(log2N) operations using simple binary chop methods

and dramatically less with indexed methods. Given that sort is

embodied in functions as diverse as database, code optimization,

numeric accuracy control, and user display functions, it is not

surprising that sort represents between 25% and 50% of all

computations[3].

Sadram sorts data as it is written to DRAM without CPU

involvement. Thus sort becomes ‘free’. ‘Inverting’ the sort process,

namely accessing data by its sorted key, is symbolic addressing.

3. Sadram Basics

Sadram adheres to the constraints of simplicity by restricting the

functionality embedded in the DRAM to the compare operation and

limiting data movement to short distances (ie., between neighboring

cells). With these simple tools Sadram maintains the row buffer in

sorted order. More elaborate structures maintain an entire block in

sorted order[6].

mailto:davidLynch@sadram.net

Sadram, Inc., August, 2024, Lititz, PA, USA R. Trout et al.

4. Declaration of a Scalar Sart

Sadram introduces a new organizational type called a sart

(acronym for a sorted array). The declaration of a sart resembles

the declaration of a single dimensional array. A sart follows the

normal scope rules of C++. The elements of the array can be a

scalar (int, float, double, etc.) or a user defined structure (but not a

class). The expression between [] defines the maximum number of

elements in the sart. For scalars the word ‘sart’ following the type

(int, float, etc.) signals that the array is sorted. For example (F4):

Elements of iSart can be referred to by position (iSart[0], iSart[1],

etc.) or by index (iSart<1234>, iSart<5678>, etc.). The positional

mapping (ie., []) is fluid and can change when elements are added

to or deleted from the sart. Positional mapping is used mostly for

maintenance.

5. Sart Structures

The data element of a sart may be a structure (aka record). The word

sart is followed by one or more keys within <>. Keys identify the

fields within the structure which are symbolic indexes, eg., (F5):

Just like scalar sarts, each element of the sSart can be referred to by

position or index, ie., sSart[0].data, sSart[1].akey, etc., or

sSart<”elephant”>.data, etc.). The same ‘fluidity’ attaches to sart

structures as to sart scalars (§4) when accessing a sart by position

and index contemporaneously.

6. Accessing Fields within a Sart

Individual fields of a sart may be referred to by [position] or by

<index>. This is the most elementary sart function; eg., (F6):

In line 1, the assignment to a sart field will either update the field if

the record already exists or add a new element to the sart with the

said key and data value if it does not exist. Changing an index will

change the sorted order of the element and may change the apparent

order of access by [position].

The important points are that these sart functions are implemented

by the DRAM [6] and do not require multiple accesses by the CPU.

Because they are implemented within the row buffer they have

minimal effect on the normal DRAM read/write cycle.

7. Adding and Retrieving Entire Records

Entire records can also be added to a sart as follows (F7A):

As the records are added they are sorted by akey; the above five

additions added to an empty sart results in:

8. Updating Sart Records

Updating a record can be done field by field (lines 1 and 2 in F8)

or the entire record can be updated (line 3 in F8), as follows:

The record append operation (+= record) adds a new record to the

sart, possibly creating a duplicate key in the process (§7A). The

record replace operation (= record) overwrites the record if the

specified record already exist. Both variants may change the key

and the sequence of the sart.

9. Accessing Fields of a Sart Record

Records created by any one of the above operations can be accessed

using the positional operator [position] or symbolically (F9):

1. record.field at “nonsense” is set to 75. If the record does not exist,

the operation will fault.

2. (+0) record.field at or immediately following the record at

“nonsense” is updated.

3. (+1) record.field immediately following “nonsense” is updated.

4. (-1) record.field immediately preceding “nonsensX” (ie., the

record <“nonsense”>) is updated; “nonsensX” merely sets the

position; -1 aligns to the actual record.

5. <-1> record.field immediately preceding the ‘current record’ is

updated.

Sadram Arithmetic in C++ Sadram, Inc., Aug, 2024, Lititz, PA USA

10. The Mechanics of Field Access

Locating the record in the above operations requires accessing the

‘more elaborate structures’ mentioned in §3. After navigating these

structures, the record itself is accessed and the appropriate field

updated. The rows constituting the three levels of ‘elaborate

structures’ are high priority residents of local DRAM cache and

may not always be required to locate the record. [6]

A sart is always dynamically allocated even if the declaration is

static or in the outer block of the program. The actual space

occupied by the sart is less than the declared maximum when the

sart is not fully populated. The actual space occupied by the sart

will usually be larger than an equivalent array because of row

allocation or indexing overhead but will often be smaller because

the density of keys is low.

11. Sart Operations: ^sart

The indexes of a sart, written as ^sart, constitute a read only sart

constructed from the keys of the sart operand. For example: after

the five records have been added to the sart as shown in the §8, the

indexes of the sart are (F11),

No DRAM operations are involved in the ^sart operator; the sart so

obtained is merely the index table from the sart itself.

12. Sart Operations: Sart versus Scalar

Normal scalar operators (designated as ⊕), ie., sart.field ⊕ scalar

perform the operation on the fields within each record of each

sart. The role of DRAM in this case is to generate and store the

raw data field so that the CPU can perform the actual ⊕operation.

Sart versus scalar operations are essentially the same as array

operations of the same kind, ie., (F12),

13. Sart Operations: Reduction of Sart to a Scalar

A scalar operator (eg., ⊕) can be applied to a sart field repeatedly

to compute the ‘sum’ of the sart fields, ie., (F13),

For example, if ⊕ == +, then + / sSart.data is the sum of the data

of each element for all elements in the sart. See §17 for discussion

of the order of the sart.

14. Sart Operations: Sart versus Sart

Scalar operators in which the left and right operands are sarts will

apply the operator to each field of the sart, ie. sartL<key>.field ⊕

sartR<key>.field; for which both sarts have corresponding

elements. Fields which are present on one sart but not the other are

ignored, ie., F14),

15. Compound Keys

A structure with two integer fields may construct its key by

‘compounding’ these two fields. The distinctive ! conjunctive

designates a compound key (F15),

The compound key is twice the size of the individual keys and

constructed by packing the two keys in the upper and lower

portions of a 32-bit word, ie., (k1 << 16) + k2. The sart will be

indexed by two keys: k1 and k2.

16. Sart Operations: Dot Product

The two ‘complementary’ indexes are the foundation of dot product

operations. Operators and sarts can be combined in a protocol that

resembles the matrix multiply operation. The dot product operator

is a combination of two scalar operators (say F and G) written F.G.

When the dot product operator is applied to two sarts (eg., the

operands sartL and sartR) it yields a third sartX with a combination

of the fields from each sart (F16):

The dot product protocol takes advantage of the fact that only

elements that are assigned values in the parameters are incorporated

in the computation. For sparse arrays, this can be an enormous

saving. Ordinary matrix multiply is a special case of the dot product

operator. Assuming each sart has two integer keys (say i and j), the

second operator is applied to row (key i) of the left operand and

column (key j) of the right operand, ie. sartL<i,k> is combined with

all values in sartR for which sartR<k,j> is defined. The + operator

is then applied to the vector of results.

Sadram, Inc., August, 2024, Lititz, PA, USA R. Trout et al.

17. Order of Sart Operations

The summation of ‘random’ floating point values is known to

produce results which can have significant errors. These errors arise

when a large number is added to a small number; the precision of

the small number is washed out by the large number because the

mantissa of the result has only a finite number of bits. Summation

should be done from smallest absolute value to largest. This is

achieved with negligible overhead by storing the intermediate

results as a sart; the sart keeps the values in sorted order so the final

summation can adhere to the proper summation method.

18. Meta Properties of a Sart

A variety of properties are associated with a sart and are available

in a uniform way using the syntax sart.propertyName

Property Name Meaning

RcdCount Number of active records in the sart

MaxCount Declared maximum count of sart

KeyName Name of indexing field

19. Current State of Sadram Implementation

Sadram is currently implemented as a pre-processor to C++. We

are currently investigating incorporating Sadram primitives into the

numpy modules of Python.

20. Conclusion

Sadram introduces to C++ an organizational type called the sart

which provides sorting and access to DRAM using symbolic

addresses. These capabilities are built into the DRAM, which

reduces CPU ⇔ DRAM traffic and thereby saves power & time in

the execution of addressing functions. Access by symbolic address

radically extends the capability of DRAM.

REFERENCES
[1] Doron Swade, 2001. The Cogwheel Brain, ISBN 978-0-349-11239-8, Abacus,

London.

[2] R.L. Sites, 1996. “It’s the Memory Stupid!” Microprocessor Rep. 10, 10 (Aug.

1996).

[3] Donald E. Knuth, 1998. The Art of Computer Programing, Volume 3, 3, ISBN 0-

201201-89685-0, Addison-Wesley, Boston, MA.

[4] Samuel K. Moore, 2021. “Memory Chips that Compute will Accelerate AI”,

https://spectrum.ieee.org/processing-in-dram-accelerates-ai

[5] Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

“A Modern Primer on Processing in Memory”, https://people.inf.ethz.ch/omutlu/pub/

ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

[6] R. Trout and D Lynch-II, 2023. “Sadram: A new memory Addressing Protocol”

https://doi.org/10.1145/3631882.3631897

https://spectrum.ieee.org/processing-in-dram-accelerates-ai
https://people.inf.ethz.ch/omutlu/pub/
https://doi.org/10.1145/3631882.3631897

