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ABSTRACT 

The Sadram architecture (Symbolically Addressable DRAM) 

enables DRAM to sort incoming data as well as perform basic 

database access functions [6]. This is equivalent to processing 

symbolic addresses rather than the traditional linear addresses. 

This extension enables DRAM to relieve the CPU of multiple 

DRAM accesses to perform elemental address computations and 

thereby save the time and energy that would otherwise be expended 

moving data to and from the CPU.  

The consequences of moving computations into DRAM (process-

in-memory or PIM) are profound. In this paper we describe the 

extensions that we have made to a standard C++ compiler to exploit 

such capability. We add a new organizational type, called a sart, to 

the language. A sart is <indexed> with angle brackets enclosing 

one or more expressions. The critical difference between arrays and 

sarts is that the sart index is not limited to small integers but may 

be a richer data element.  

Sadram CONCEPTS 
• Primacy of sort as an organizational tool 

• Inherent parallelism of DRAM 

• Address computation in DRAM 

• Accessing arrays with non-linear indexes 
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1. Motivation 

DRAM is intrinsically a block device, ie., accessing a single bit 

requires accessing an entire block (aka row). Sadram exploits this 

intrinsic parallelism.  

About half of the energy consumed by memory is spent moving 

data to the CPU. This along with the intrinsic latency of DRAM,  

have driven CPU manufacturers to incorporate enormous cache 

memories into the CPU. Cache memory is fast and close to the CPU 

but has a much higher power/bit budget than DRAM because it is 

implemented as SRAM which draws power to merely hold the data. 

This is another  motivation to exploit the parallelism of DRAM.  

The motivation for extending the C++ compiler is to provide direct 

access to symbolic addresses. C++ was chosen because it does not 

have a native symbolic address mechanism. Python is also under 

active consideration; it only requires the modification of the 

NumPy and SciPy libraries to implement Sadram functionality. 

Sadram efficiently implements sparse arrays without explicit 

coding because only those elements an array which are used incur 

the cost of storage (and indexing). Arrays with a large percentage 

of unused locations (sparse arrays) are stored more efficiently than 

traditional address based schemes.  

Sadram functionality is implemented with very simple logic. This 

simplicity is not merely a recognition that memory transistors are 

not ideal for computations (memory transistors are designed to hold 

data, versus CPU transistors designed to move data), but simplicity 

is the inevitable consequence of high level parallelism. Only the 

most simple functions will be common to all algorithms. 

2. Sort and Symbolic Addresses 

Sort is the most fundamental organizational tool. Access to 

unordered data requires O(N/2) operations to find one item in a 

collection of N item. Finding the same datum in an ordered set 

requires O(log2N) operations using simple binary chop methods 

and dramatically less with indexed methods. Given that sort is 

embodied in functions as diverse as database, code optimization, 

numeric accuracy control, and user display functions, it is not 

surprising that sort represents between 25% and 50% of all 

computations[3].  

Sadram sorts data as it is written to DRAM without CPU 

involvement. Thus sort becomes ‘free’. ‘Inverting’ the sort process,  

namely accessing data by its sorted key, is symbolic addressing.  

3. Sadram Basics 

Sadram adheres to the constraints of simplicity by restricting the 

functionality embedded in the DRAM to the compare operation and 

limiting data movement to short distances (ie., between neighboring 

cells).  With these simple tools Sadram maintains the row buffer in 

sorted order. More elaborate structures maintain an entire block in 

sorted order[6].   
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4. Declaration of a Scalar Sart 

Sadram introduces a new organizational type called a sart 

(acronym for a sorted array). The declaration of a sart resembles 

the declaration of a single dimensional array. A sart follows the 

normal scope rules of C++. The elements of the array can be a 

scalar (int, float, double, etc.) or a user defined structure (but not a 

class). The expression between [] defines the maximum number of  

elements in the sart. For scalars the word ‘sart’ following the type 

(int, float, etc.) signals that the array is sorted. For example (F4): 

Elements of iSart can be referred to by position (iSart[0], iSart[1], 

etc.) or by index (iSart<1234>, iSart<5678>, etc.). The positional 

mapping (ie., []) is fluid and can change when elements are added 

to or deleted from the sart. Positional mapping is used mostly for 

maintenance.  

5. Sart Structures 

The data element of a sart may be a structure (aka record). The word 

sart is followed by one or more keys within <>.  Keys identify the 

fields within the structure which are symbolic indexes, eg., (F5):  

 
Just like scalar sarts, each element of the sSart can be referred to by 

position or index, ie., sSart[0].data, sSart[1].akey, etc., or 

sSart<”elephant”>.data, etc.). The same ‘fluidity’ attaches to sart 

structures as to sart scalars (§4) when accessing a sart by position 

and index contemporaneously.  

6. Accessing Fields within a Sart 

Individual fields of a sart may be referred to by [position] or by 

<index>. This is the most elementary sart function; eg., (F6): 

In line 1, the assignment to a sart field will either update the field if 

the record already exists or add a new element to the sart with the 

said key and data value if it does not exist. Changing an index will 

change the sorted order of the element and may change the apparent 

order of access by [position]. 

The important points are that these sart functions are implemented 

by the DRAM [6] and do not require multiple accesses by the CPU. 

Because they are implemented within the row buffer they have 

minimal effect on the normal DRAM read/write cycle. 

7. Adding and Retrieving Entire Records  

Entire records can also be added to a sart as follows (F7A):  

 
As the records are added they are sorted by akey; the above five 

additions added to an empty sart results in: 

 

8. Updating Sart Records 

Updating a record can be done field by field (lines 1 and 2 in F8) 

or the entire record can be updated (line 3 in F8), as follows: 

 
The record append operation (+= record) adds a new record to the 

sart, possibly creating a duplicate key in the process (§7A). The 

record replace operation ( = record) overwrites the record if the 

specified record already exist. Both variants may change the key 

and the sequence of the sart. 

9. Accessing Fields of a Sart Record 

Records created by any one of the above operations can be accessed 

using the positional operator [position] or symbolically (F9): 

 
1. record.field at “nonsense” is set to 75. If the record does not exist, 

the operation will fault.  

2. (+0) record.field at or immediately following the record at 

“nonsense” is updated. 

3. (+1) record.field immediately following “nonsense” is updated. 

4. (-1) record.field immediately preceding “nonsensX” (ie., the 

record <“nonsense”>) is updated; “nonsensX” merely sets the 

position; -1 aligns to the actual record. 

5. <-1> record.field immediately preceding the ‘current record’ is 

updated. 
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10. The Mechanics of Field Access 

Locating the record in the above operations requires accessing the 

‘more elaborate structures’ mentioned in §3. After navigating these 

structures, the record itself is accessed and the appropriate field 

updated. The rows constituting the three levels of ‘elaborate 

structures’ are high priority residents of local DRAM cache and 

may not always be required to locate the record. [6] 

A sart is always dynamically allocated even if the declaration is 

static or in the outer block of the program.  The actual space 

occupied by the sart is less than the declared maximum when the 

sart is not fully populated. The actual space occupied by the sart 

will usually be larger than an equivalent array because of row 

allocation or indexing overhead but will often be smaller because 

the density of keys is low. 

11. Sart Operations: ^sart 

The indexes of a sart, written as ^sart, constitute a read only sart 

constructed from the keys of the sart operand. For example: after 

the five records have been added to the sart as shown in the §8, the 

indexes of the sart are (F11), 

No DRAM operations are involved in the ^sart operator; the sart so 

obtained is merely the index table from the sart itself. 

12. Sart Operations: Sart versus Scalar 

Normal scalar operators (designated as ⊕), ie., sart.field ⊕ scalar   

perform the operation on the fields within each record of each 

sart. The role of DRAM in this case is to generate and store the 

raw data field so that the CPU can perform the actual ⊕operation. 

Sart versus scalar operations are essentially the same as array 

operations of the same kind, ie., (F12),

 

13. Sart Operations: Reduction of Sart to a Scalar 

A scalar operator (eg., ⊕) can be applied to a sart field repeatedly 

to compute the ‘sum’ of the sart fields, ie., (F13), 

For example, if ⊕ == +, then + / sSart.data is the sum of the data 

of each element for all elements in the sart. See §17 for discussion 

of the order of the sart. 

 

14. Sart Operations: Sart versus Sart 

Scalar operators in which the left and right operands are sarts will 

apply the operator to each field of the sart, ie. sartL<key>.field ⊕ 

sartR<key>.field; for which both sarts have corresponding 

elements. Fields which are present on one sart but not the other are 

ignored, ie., F14), 

15. Compound Keys  

A structure with two integer fields may construct its key by 

‘compounding’ these two fields. The distinctive ! conjunctive 

designates a compound key (F15),  

The compound key is twice the size of the individual keys and 

constructed by packing the two keys in the upper and lower 

portions of a 32-bit word, ie., (k1 << 16) + k2. The sart will be 

indexed by two keys: k1 and k2.  

16. Sart Operations: Dot Product 

The two ‘complementary’ indexes are the foundation of dot product 

operations. Operators and sarts can be combined in a protocol that 

resembles the matrix multiply operation. The dot product operator 

is a combination of two scalar operators (say F and G) written F.G. 

When the dot product operator is applied to two sarts (eg., the 

operands sartL and sartR) it yields a third sartX with a combination 

of the fields from each sart (F16):  

The dot product protocol takes advantage of the fact that only 

elements that are assigned values in the parameters are incorporated 

in the computation. For sparse arrays, this can be an enormous 

saving. Ordinary matrix multiply is a special case of the dot product 

operator. Assuming each sart has two integer keys (say i and j), the 

second operator is applied to row (key i) of the left operand and 

column (key j) of the right operand, ie. sartL<i,k> is combined with 

all values in sartR for which sartR<k,j> is defined. The + operator 

is then applied to the vector of results.  
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17. Order of Sart Operations 

The summation of ‘random’ floating point values is known to 

produce results which can have significant errors. These errors arise 

when a large number is added to a small number; the precision of 

the small number is washed out by the large number because the 

mantissa of the result has only a finite number of bits. Summation 

should be done from smallest absolute value to largest. This is 

achieved with negligible overhead by storing the intermediate 

results as a sart; the sart keeps the values in sorted order so the final 

summation can adhere to the proper summation method. 

18. Meta Properties of a Sart 

A variety of properties are associated with a sart and are available 

in a uniform way using the syntax sart.propertyName 

Property Name Meaning 

RcdCount Number of active records in the sart 

MaxCount Declared maximum count of sart  

KeyName Name of indexing field  

19. Current State of Sadram Implementation 

Sadram is currently implemented as a pre-processor to C++.  We 

are currently investigating incorporating Sadram primitives into the 

numpy modules of Python. 

20. Conclusion  

Sadram introduces to C++ an organizational type called the sart 

which provides sorting and access to DRAM using symbolic 

addresses. These capabilities are built into the DRAM, which 

reduces CPU ⇔ DRAM traffic and thereby saves power & time in 

the execution of addressing functions. Access by symbolic address 

radically extends the capability of DRAM. 
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